テクノエーピー社製 DSP 製品

HPGe 半導体検出器の調整手順

第1.0.0版 2024年11月

株式会社 テクノエーピー 〒312-0012 茨城県ひたちなか市馬渡2976-15 TEL : 029-350-8011 FAX : 029-352-9013 URL : http://www.techno-ap.com e-mail: info@techno-ap.com

一目次一

1.		概要	З
2.		接続と設定	4
2.	1.	接続と高圧印加	4
2.	2.	プリアンプ出力信号の極性の確認	7
2.	З.	アナログポールゼロの設定	8
2.	4.	アナログゲインの設定	10
2.	5.	FAST のポールゼロの設定	11
2.	6.	SLOW ポールゼロの設定	12
2.	7.	FASTのthresholdの設定	14
2.	8.	slow rise time と slow flat top time の設定	15
2.	9.	デジタルゲインの設定	16
2.	10	・ エネルギー校正と Gauss fitting	17
2.	11.	. Calibration fileの生成	19
2.	12	. peak serch analysis 機能を使用した計測	

1. 概要

本書は、テクノエーピー社製 DSP 搭載製品 APU101G を使用し、型式 GEM10-70 の HPGe 検出器 を調整手順を記したものです。

機器の接続やパラメータの詳細、トラブルシューティング等については、それぞれの取扱説明書をご参考 ください。

調整手順の流れは次の通りです。

2. 接続と設定

2.1. 接続と高圧印加

HPGe 検出器からのケーブルを確認します。

- ① preamp 電源用 D-sub コネクタ
- ② preamp 信号出力用 BNC コネクタ
- ③ HV EDDI用 SHV コネクタ
- ④ バイアスシャットダウン用 BNC コネクタ

信号線とバイアスシャットダウン用は同じ BNC コネクタなので 注意が必要です。

APU101Gの背面です。

- ① preamp 電源出力用 D-sub コネクタ
- ② preamp 信号入力用 BNC コネクタ
- HV 印加出カ用 SHV コネクタ
- ④ バイアスシャットダウン入力用 BNC コネクタ

また、⑤ MONI 端子 は、後述でオシロスコープへ接続し調整を するために使用します。

APU101G の電源が入っていないことを確認し、同じ 番号を接続していきます。

①~④のケーブルを接続し完了した状態です。

さらに下記をAPU101Gへ接続していきます。

⑤ MONI用のケーブル⑥ 付属のAPU101G用電源ケーブル

MONI 用ケーブルの先は今は未接続です。

プリアンプ信号出力

⑦ LAN ケーブルはPCと接続します。

背面②に接続してある preamp 信号をオシロスコープへ接続します。

 ⑧ POWER スイッチをON します。
APU101G へ電源が供給され、Ge 検出器への preamp 電源も 供給が開始されます。

オシロスコープを見ると、高圧がかかっていない状態でも、プリアンプ信号が出力されているのが確認できます。

Device m	neas file	calibration	option	HV
HV OFF				
HV out	advanced			
output enable OFF step1	output voltage(V) 0 : 100	step sw enable vo	reep Itage(V/r	n)
step2 step3	: 250		10 -	set parameter
-HV status-	-			
output polarity	output current(uA)	bias shutdown	bias-shutd Voltage(V	own HV) emergency
pos	0 uA		0.0	
	bias-shutdov judge voltag	vn je(V)		bias-shutdown polarity
	-2	24.0		negative
	auto recove exit bias-shu ON	r after tdown		

アプリケーションを立ち上げ、"HV"タブを開きます。 極性は検出器毎に異なりますので、必ず確認してください。

HPGe 検出器は極性が pos です。赤枠が pos の設定であることを確認します。

APU101Gは最大3段階のEDD加速度を設定できます。 step3 には、OperationVoltage を設定しました。step1、 step2 には、掃引速度を変更したい電圧を設定しました。

100Vまで100V/min、250Vまで200V/min、1500Vまで700V/minで電圧速度を掃引しEDDする設定です。

高圧EDDのを開始する時は、赤枠をクリックし"ON"にします。 青枠をクリックするとポップアップ画面が立ち上がり、"OK "をクリックすると、設定通りに高圧のEDDの開始します。

高田印加中は絶対にケーブルを外さないでください。故障の原因になります。

HV s	weep	acq.	save	error	mode	histogram
(cps)	(ch)	FWHM (%)	FWHM (keV)	FWTM (keV)	meas. mode meas. time	real time 01:00:00
NaN	0.0	0.000	0.000	0.000	data file size(byte)	00:00:00
NaN NaN	0.0	0.000	0.000	0.00	HV output	+91 V
NaN	0.0	0.000	0.000	0.00		-
NaN	0.0	0.000	0.000	0.000	set voltage(V)	sweep(V/min)
NaN	0.0	0.000	0.000	0.000	step1 : 100 V	100 V/min
.000	0.0	0.000	0.000	0.000	step2 : 250 V	200 V/min
.000	0.0	0.000	0.000	0.000	step3 : 1500 V	700 V/min

高圧EDDI中は、赤枠のようにHV sweep が点灯します。 青枠は現在のEDI可電圧値のモニタ電圧です。

HV	on	acq.	save	error	mode	histogram
(cps)	(ch)	FWHM (%)	FWHM (keV)	FWTM (keV)	meas. time	01:00:00
NaN	0.0	0.000	0.000	0.000	data file size(byte)	00:00:00
NaN NaN	0.0	0.000	0.000	0.000	meas. count HV output	0/ 1 +1501 V
NaN	0.0	0.000	0.000	0.000	HV status	shutdown

高圧EDDIの完了すると、赤枠のように"HV ON"となります。

2.2. プリアンプ出力信号の極性の確認

放射線源はAm-241、Cs-137、Eu-152、Co-60です。

高圧印加が完了後の、プリアンプ信号を接続したオシロスコープ 画像です。信号が上側に立ち上がることから信号の極性が正極性 であることが確認できます。

また、信号が急峻に立ち上がった後、指数関数的にグラウンドレベルに戻っていくことから、抵抗フィードバック型のプリアンプ出力であることが確認できました。

APU101					
analog polarity pos 🗸	analog coarse gain x5 🗸	analog fine gain 222 🚖	analog pole zero 183	co RF	upling
fast		fast	fast		
fast diff	fast integral	pole zero	threshold	1	
100 🗸	100 🗸	0 🖨	50	•	
slow slow risetime(ns)	slow flattop time(ns)	slow polezero	slow threshold	d	
13200 韋	800 🜩	703 韋	20	•	
digital coarse gain x4 ~	digital fine gain 0.7145 🜲	inhibit width (us)			
timina					
timina	CFD	CFD debu(pc)			
Ciriling		delay(IIS)			
CFD 🗸	0.25 🗸	50 🗸			
MCA			nile un		
ADC gain	LLD	ULD	rejector		
16384 🗸	50 🗢	16380 😫	off	~	
mode	IP	address	ſ	DAC m	onitor
histogram	~ 19	2.168.10.16		slow	~

オシロスコープで検出器の信号極性が正極性であると確認された ので"polarity"を"pos"に設定します。 また抵抗フィードバック型プリアンプ出力タイプでいしたの で"coupling"を"RF"に設定しました。

プリアンプの信号が下に立ち下がる様子が見られた時は、負極性 の信号ですので、アプリケーションの"polarity"は"neg"に 設定してください。

また、プリアンプ出力がノコギリ波のように±大きく振れ、その途中に信号が確認されたときは、トランジスタリセット型のプリアンプなので"coupling"を"TR"に設定してください。

今オシロスコープに接続しているプリアンプ信号の接続先を、 APU101GのINPUT 端子へ接続します。 2.3.アナログポールゼロの設定

Device	meas	file	C	alibration	0	option	HV		
APU101									
analog polarity	ana	alog arse ga	ain	analog fine gain	1	analog pole ze	ero	coup	ling
pos	× x5	ŀ	\sim	222	۲	140	٢	RF	\sim
fast				fast		fast			
fast diff	fas	t integ	gral	pole zero	D	thresh	old		
100	~ 10	0	\sim	60	\$	50	٢		
slow slow risetime	slo flat (ns) tim	w top ne(ns) 0	¢	slow polezero 600	\$	slow thresh	old		
digital coarse g x4	dig pain fine	ital gain 7135	¢	inhibit width (u 60	s)				
timing timing CFD 🗸	CF fui 0.2	D nction		CFD delay(ns)				
MCA						nile un			
ADC gai	n LLC)		ULD		rejecto	or		
16384	~ 50		\$	16380	÷	off	\sim		
mode			IP	address			DAC	C mor	nitor
histogra	m 🗸		19	2.168.10	.16		pre	amp	\checkmark

背面にある⑤MONI 端子からモニタ出力をオシロスコープに接続します。

アプリケーション中のモニタ信号の種類"DAC monitor" を"pre amp"に選択します。

オシロスコープを確認すると波形の立下り後にアンダーシュートしている様子が確認されました。

アプリケーション中の" analog pole zero" を調整していきます。

"analog pole zero"の数値を大きくすることで、オーバーシュートがなくなってきました。今の" analog pole zero "は 190 digit でした。

Malouns A Cha 1 24.4mV

電圧レンジを20mVから2mVに変更すると、まだ若干のオーバーシュートが観測されました。

20mV レンジでは調整できてと思っていても、レンジを拡大することでまだ調整が必要なことがわかりました。

"analog pole zero"の数値を183 digit に調整すると、オー バーシュートが完全になくなるように調整できました。

オシロスコープのレンジによっては、調整しろがまだあるにも関わらず、調整できたと誤判断しますので、最終の調整では低い電 圧レンジで行うようにしてください。

アナログポールゼロの調整はエネルギー分解能に非常に大きく影響します。

立下りに後、アンダーシュートやオーバーシュートのないように 1 digit 単位で調整する必要があります。

APU101のアナログのゲインを調整していきます。 モニタ出力からの" preamp"を出力させて、オシロスコープの 縦スケールと横スケールを変更したものです。

APU101のモニタ出力のフルスケールは±1Vです。 エネルギーフルスケールレンジが 1.5MeV の場合、 1333keV@Co-60の信号のピークは880mV になります。

880mV ≒ 1333keV÷1500keV×1000mV

調整前は" analog coarse gain" x2、" analog fine gain" 100の状態で、まだまだ波高が小さい様子が確認できました。

"analog coarse gain" x5、" analog fine gain "222 とす ることで、Co-60 の 1333keV の濃く映る波形がおおよそ 880mVに設定することができました。

2. 5. FAST のポールゼロの設定

APU101				
analog polarity pos v fast fast diff 100 v	analog coarse gain x5 v fast integral 100 v	analog fine gain 222 🔹 fast pole zero 0	analog pole zero 183 🜩 fast threshold 50 🜩	coupling
slow slow risetime(ns) 13200 digital coarse gain x4 timing timing CFD	slow flattop time(ns) 800 Image: slow slow slow slow slow slow slow slow	slow polezero 703 inhibit width (us) 60 CFD delay(ns) 50	slow threshold 20]
MCA ADC gain 16384 ~	LLD 50 🗢	ULD 16380 🜩	pile up rejector off 🗸]
mode histogram	IP :	address 2.168.10.16	D/ fa	AC monitor st 🔍

アプリケーション中のモニタ信号の種類を"fast"に選択しま す。モニタ出力の波形の種類がfast信号に切り替わります。

fastはpreamp信号を元に、タイミングフィルタアンプ回路の 微分処理と積分処理をした波形です。 時間情報の取得、BaselineRestore、エネルギー取得の開始タイ ミングなどに関わります。

調整前の fast 信号のオシロスコープ画像です。 波形の立下り後にアンダーシュートがあることが確認できます。

アプリケーションの fast "pole zero"の値を 100digit に調整 し、アンダーシュートがないように調整した様子です。 2. 6. SLOW ポールゼロの設定

Device	me	as file	C	alibration	0	ption	HV		
APU101									
analog polarity	/	analog coarse g	ain	analog fine gain	-	analog pole ze	ero	coup	ling
pos	\sim	x5	\sim	222	•	183	÷	RF	\sim
fast fast dif	ff	fast inte	gral	fast pole zero		fast thresh	old		
100	\sim	100	\sim	60	¢	50	\$		
slow slow risetim	e(ns)	slow flattop time(ns)	slow polezero		slow thresh	old		
13200	1	800	٢	500	•	20	\$		
digital coarse	gain	digital fine gain		inhibit width (us	;)				
x4	\sim	0.7145	٢	60	¢				
timing timing CFD ~		CFD function	n V	CFD delay(ns) 50 🗸					
MCA						pile up			
ADC g	ain	LLD		ULD		rejecto	or		
16384	\sim	50	¢	16380	¢	off	\sim		
mode histogr	am		IP :	address 2.168.10.1	16		DAC	c mor v	nitor

アプリケーション中のモニタ信号の種類を"slow"に選択します。モニタ出力の波形の種類がfast信号に切り替わります。

slow は preamp 信号を元に Trapezoidal Filter 処理をした波形 です。

slowの波高がエネルギー情報そのものなので調整が重要です。

オーバーシュートがあり、" slow pole zero"の設定値を調整 する必要であることが確認できます。

"slow pole zero"の調整値を711digit に調整することにより、オーバーシュートやアンダーシュートのない slow 波形を整えることができました。

"analog pole zero"の調整の時と同様に、オシロスコープの 電圧レンジを 20mV から 2mV に変更したものです。アンダー シュートが確認できます。

ここでも 20mV 電圧レンジでは調整できたと思っていても、 2mV レンジにするとまだ調整が必要なことがわかりました。

"slow pole zero"を708digitに調整すると、アンダーシュートが無くなり、完全に調整できたことがわかります。

"slow pole zero"の値は、エネルギー分解能に非常に大きく 影響します。1~2digit 異なる場合でも影響は大きいので、実際の環境や繰り返しの計測を行い、最適な調整値を見つけるようにしてください。

また、" slow pole zero"の値自身も、検出器に依存しさまざまです。必ずオシロスコープで確認しながら調整するようにしてください。

2. 7. FASTのthresholdの設定

H Io.	input (cps)	rate i	through rate(cps	put ;)	live tir	ne	dead	time	dead time ratio(%)
L	648.29	8k	14.0	00	00:00	:00	00:0	0:05	100.0
De	vice m	eas	file c	alibratio	on o	ption	HV	1	
AP	U101								
an	alog						_		
	olarity	analo	g e gain	analog) ain	analog pole ze	ero	couplin	na
1	pos 🗸	x5		222	-	183	÷	RF	-
fas	st.			fast		fast			
f	fast diff	fast i	ntegral	pole z	ero	thresh	old		
	100 🗸	100	~	60	÷	10	-		
slo	w	slow	00	slow		slow			
j	risetime(n	s) time	(ns)	poleze	ro	thresh	old		
	13200 韋	800	-	705	÷	20	\$		
-	digital	digita		inhibit	(110)				
ſ	x4	0.71		60	(us)				
tin	ning								
-	timina	CFD	tion	CFD delav(ns)				
1	CFD 🗸	0.25		50 ~	1				
M	A					pile up			
1	ADC gain	LLD		ULD		rejecto	or		
	16384 🗸	50	÷	16380) 🔤	off	\sim		
r	node		IP a	address	;		DAC	monit	or
_]	10				clow		

CH No.	input rate (cps)	throughput rate(cps)	live time	dead time	dead time ratio(%)
1	1.295k	1.318k	00:01:53	00:00:05	3.9

アプリケーションの mode を"histogram"にし、計測をスタートさせます。

アプリケーションのステータスの input rate に注目すると、 input rate が 600kops、さらには input rate と throught rate の計数率がアンバランスであることが確認されました。 この状態でのスペクトルを確認すると、全く出てきてないことが 確認されました。

この現象は fast の信号に対する threshold である" fast threshold"の設定が小さすぎるために、ノイズ部分もひっかけて多数計数してしまっている状態です。

"fast threshold"の値を徐々に大きくしていき 50digit と設定 すると、input ratet と through rate が同程度に落ち着きまし た。

"fast threshold"は、slow 波形のベースライン補正である、 ベースラインレストアラ計算の大きな要因となっています。エネ ルギー分解能を良く出すためには重要な設定項目です。

2. 8. slow rise time と slow flat top time の設定

Slow rise tmie	Slow flat top time	アナログ
13200 ns	800 ns	6 us
4400 ns	800 ns	2 us

" slow rise time" と" slow flat top time" の設定値もエネル ギー分解能を良く計測するための非常に影響のある設定値です。

GEM10-70 の場合の" slow rise time"と" slow flat top time"の設定のデフォルト値は左表となっています。

Ge メーカの違いや Ge の効率、プレナ型や同軸型などの形状、 設置環境などにも依存して、最適な設定値はさまざまです。

お客様自身の計測環境による最適な設定値は、デフォルトの値を 基準として、" slow rise time"は 5 μ s~16us、" slow flat top time"は 500ns~1000ns と、値を変更、繰り返し計測 し、分解能と両パラメータとの依存を知る必要が出てきます。

アナログの時定数と比べると、" slow rise time" = 2.0~2.4× アナログ時定数となります。

2.9. デジタルゲインの設定

🗅 ch	⊖eV ⊖keV	🔿 manual	⊖ file
ROI	centroid(ch)	energy	
ROI1 🗸	- 657.93 -	59.54	
ROI6 🗸	- 15499.23 -	1408	
calibratio	n file path		
C:	regurator入れる)	入力に¥	

アプリケーションの mode を"histogram"にし、計測を start します。

caliblation タブの" ch" にチェックを入れてください。

アナログゲインのフルスケールに合わせてデジタルゲインも調整していきます。

エネルギーフルスケール1.5MeVに調整したいので、ADCgain (X軸の細かさ)が16384の場合は1333keV@Co-60のス ペクトルピークは約14550chに立つように調整します。

14550digit ≒ 1333keV/1500keV*16384digit

デジタルゲインを調整する前は1333keVのピークが5000ch 付近にあり、デジタルゲインが低いことが分かります。

1333keVが目標の14550digit になるように "digital coarce gain" と" digital fine gain"を調整していきます。

"digital coarce gain" と" digital fine gain"を調整することで、1333keV のピークが 14550digit となるように調整できました。

2.10. エネルギー校正と Gauss fitting

ROI	ROI CH		ROI start (keV)		ROI end (keV)		energy (keV)		itting
1	CH1	\sim	58.3	¢	60.9	-	59.54	\$	
2	CH1	\sim	113.1	÷	129	\$	121.78	\$	
3	CH1	\sim	654.9	\$	670.8	\$	661.7	\$	
4	CH1	\sim	1170.1	-	1176.8	\$	1173.2	٢	
5	CH1	\sim	1329.2	\$	1336.3	٢	1332.5	\$	
6	CH1	\sim	1400.1	-	1417.8	\$	1408	٢	
7	none	\sim	4.3	-	4.3	-	1	-	
8	none	\sim	4.3	-	4.3	\$	1	-	

エネルギー校正は、既知のエネルギーのピークに対して ROI を設定すると、X軸のスケールをchからkeV など単位に変換する校正です。

アプリケーションの calibration タブを表示します。

例えば、Cs-137、Eu-152、Am-241、Co-60線源を使用した場合、赤枠ように energy 欄に既知のエネルギーを入力します。

ROI	ROI CH		ROI start (keV)		ROI end (keV)		energy (keV)	fi	iauss
1	CH1 🗸]	58.3	-	60.9	\$	59.54	\$	\Box
2	CH1 🗸]	113.1	-	129	-	121.78	\$	
3	CH1 🗸		654.9	\$	670.8	\$	661.7	٢	
4	CH1 🗸		1170.1	-	1176.8	-	1173.2	٢	
5	CH1 🗸]	1329.2	-	1336.3	\$	1332.5	٢	
6	CH1 🗸]	1400.1	-	1417.8	\$	1408	÷	
7	none 🗸		4.3	-	4.3	-	1	٢	
8	none 🗸		4.3	÷	4.3	\$	1	٢	

青枠のROI start、ROI end には、スペクトルを確認しながら、ch 情報を入力します。または、スペクトル上にある ROI ラインをマウスでドラックし設定することもできます。

ROI start と ROI end に数値を入力した後のスペクトルです。ピークを挟んで ROI start end の縦線が表示されました。

エネルギーが既知の59.54keVと1408keVの2点を元にしたエネルギー校正を行います。

赤枠のROIの選択にROI1(59.54keV)とROI6(1408keV)を選択します。

青枠の keV にチェックを入れると、ROI1 と ROI6 の情報を元に、緑枠のように 1 次式 ax+b でのエネルギー校正ができました。

> この時点では、1 次式 ax+b での校正ではありますが、2 次式を使用 した、より精密なエネルギー校正もできます。 こちらについては後述に記述します。

エネルギー校正前

ROI NO.	peak (ch)	centroid (ch)	peak (count)	gross (count)	gross (cps)	net (count)	net (cps)	FWHM (ch)	FWHM (%)	FWHM	FWTM
ROI1 :	651.00	650.71	24.103k	178.984k	207.397	160.026k	185.430	6.4	0.989	6.438	11.736
R012 :	1328.00	1328.25	6.223k	77.933k	90.305	47.590k	55.145	7.4	0.558	7.415	13.518
ROI3 :	7205.00	7205.55	294.000	8.130k	9.421	3.347k	3.878	12.9	0.180	12.947	23.602
ROI4 :1	2774.00	12774.83	682.000	11.960k	13.859	11.037k	12.789	16.5	0.129	16.506	30.089
ROIS :1	4510.00	14508.86	596.000	10.191k	11.809	9.913k	11.487	17.3	0.119	17.256	31.456
ROI6 :1	5332.00	15330.94	266.000	4.829k	5.596	4.536k	5.256	17.9	0.116	17.855	32.548
ROI7 :	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000
ROI8 :	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000

校正が完了すると、アプリケーション右上のROI情報の赤枠FWHM とFWTMがch 換算の数値から、keV 換算に数値に変換されます。

特にGe半導体検出器や計測モジュールの良し悪しを見る指標として 1333keVの半値幅エネルギーが挙げられます。

エネルギー校正後

ROI

ROI No.	peak (keV)	centroid (keV)	peak (count)	gross (count)	gross (cps)	net (count)	(cps)	FWHM (ch)	FWHM (%)	FWHM (keV)	FWTM (keV)
ROI1 :	59.57	59.54	25.352k	188.011k	207.518	168.111k	185.553	6.4	0.989	0.591	1.077
ROI2 :	121.75	121.78	6.544k	81.862k	90.355	49.995k	55.182	7.4	0.559	0.681	1.242
ROI3 :	661.59	661.64	303.000	8.496k	9.377	3.495k	3.857	12.9	0.180	1.188	2.167
ROI4 :	1173.13	1173.21	713.000	12.541k	13.842	11.560k	12.759	16.5	0.129	1.514	2.760
ROI5:	1332.59	1332.49	628.000	10.665k	11.772	10.375k	11.452	17.3	0.119	1.588	2.894
ROI6 :	1408.10	1408.00	279.000	5.072k	5.598	4.764k	5.258	17.9	0.117	1.643	2.994
ROI7 :	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000
ROI8:	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000

青枠 ROI5に 1333keV を設定しました。 エネルギー分解能は 1.588keV と出ています。

環境にもよりますが、おおむね1.6keV~1.9keV付近であることを 確認してください。

ROI NO.	peak (keV)	centroid (keV)	peak (count)	gross (count)	gross (cps)	net (count)	net (cps)	FWHM (ch)	FWHM (%)	FWHM (keV)	FWTM (keV)
ROI1 :	59.52	59.50	339.000	2.452k	222.909	2.230k	202.697	6.5	0.990	0.596	1.093
ROI2 :	121.82	121.79	88.000	1.064k	96.727	716.000	65.091	7.5	0.561	0.685	1.203
ROI3 :	661.85	661.85	5.000	67.000	6.091	67.000	6.091	10.3	0.143	0.950	-Inf
ROI4 :	1173.50	1173.49	11.000	162.000	14.727	137.000	12.485	12.4	0.097	1.144	-Inf
ROI5 :	1332.08	1332.05	10.000	128.000	11.636	128.000	11.636	-Inf	-In	-Inf	-Inf
ROI6 :	1408.37	1408.40	5.000	54.000	4.909	54.000	4.909	14.2	0.092	1.302	-Inf
ROI7:	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000
ROI8 :	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000

スタートし始めの時や放射線強度が弱い試料の時などは、カウント が少なくたまるまで時間がかかる時があります。

この状態では、正しい計算結果が得られない場合があります。

ROI	ROI CH	ROI start (keV)	ROI en (keV)	d	energy (keV)		Gauss fitting	青枠にあ
1	CH1 🗸	58.3	\$ 60.9	\$	59.54	4	\square	直後もよ
2	CH1 🗸	113.1	\$ 129	\$	121.78	4	\square	
3	CH1 🗸	658.8	\$ 665.6	\$	661.7	4	\square	
4	CH1 🗸	1170.1	\$ 1176.	8 ≑	1173.2	4	\square	
5	CH1 🗸	1329.2	\$ 1336.	3 🗘	1332.5	4	\square	
6	CH1 🗸	1400.1	\$ 1417.	8 🜲	1408	4	\square	
7	none 🗸	4.3	4.3	-	1	-		
8	none 🗸	4.3	\$ 4.3	\$	1	¢		

るように"Gauss fitting"をすることによって、計測開始 り正確に算出することができます。

ROI NO.	peak (keV)	centroid (keV)	peak (count)	gross (count)	gross (cps)	net (count)	net (cps)	FWHM (ch)	FWHM (%)	FWHM (keV)	FWTM (keV)
ROI1 :	59.52	59.49	686.000	5.120k	222.609	4.581k	199.188	6.5	0.997	0.596	1.086
ROI2 :	121.73	121.75	195.000	2.248k	97.739	1.343k	58.399	7.5	0.561	0.685	1.248
ROI3 :	661.30	661.74	11.000	153.000	6.652	66.000	2.885	13.0	0.180	1.193	2.174
ROI4 :	1173.31	1173.13	25.000	345.000	15.000	277.000	12.065	16.2	0.127	1.488	2.712
ROI5 :	1332.17	1332.50	21.000	286.000	12.435	265.000	11.511	16.3	0.112	1.498	2.730
ROI6 :	1407.36	1407.87	12.000	153.000	6.652	119.000	5.153	19.0	0.124	1.750	3.190
ROI7 :	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000
ROI8:	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.0	0.000	0.000	0.000

"Gauss fitting"が"ON"の状態で、同計数時の計算結果です。 少ないカウントですが妥当な計算結果が出ていることが確認できま す。

2.11. Calibration file の生成

2 次式を使用したエネルギー校正は、calibration ファイルが必要です。

calibration ファイルの生成はスペクトルと ROI 情報を使用しますので、 スペクトルの計数が多く取れた状態で生成するようにしてください。

File	Edit Window	v Graph	Tool	Clear Sta	rt S	Stop		
CH CH CH No.	el APU101 input rate (cps)	throughp rate(cps)	ga pe au au	uss fit analys ak search an to pole zero to threshold	is alysis	5	e	dead tir ratio(%
1	1.290k	1.31	spe	ectrum calcu	latio	n	7	4.0
	1.2.508	1.51	cre	eate calibratio	on fil	e	Í.	2

mode "histogram"でスペクトルが取得できている時に、"Toolcreate calibration file"をクリックします。

Select	ROI	ROI CH	ROI start (ch)	ROI end (ch)	energy (keV)	centroid (ch)	FWHM (ch)
	1	CH1	617	713	59.54	652.48	6.664
	2	CH1	1234	1407	121.78	1331.69	7.522
	3	CH1	7131	7305	661.70	7223.41	12.943
	4	CH1	12721	12875	1173.20	12806.50	16.857
	5	CH1	14417	14648	1332.50	14544.76	17.342
	6	CH1	15246	15439	1408.00	15368.79	17.812
	7	none	50	50	1.00	0.00	0.000
	8	none	50	50	1.00	0.00	0.000
mode	e		target CH				
cal	c V	iew	CH1 🗸				Calculati

ROI1 から ROI6 を使用し、calibration file を生成します。 赤枠のように、対象の ROI に対してチェックを入れます。

"save file"をクリックし、calibration file を生成し保存します。 "File-close"でポップアップアプリケーションを閉じてください。

チェックが入った ROI を元に、エネルギー校正と半値幅校正の計算が 瞬時に計算され、結果のグラフが表示されます。

unit of x axis ○ ch ○ eV ○ keV ○ ma	anual 🔘 file
ROI centroid(ch) energy (keV) *a
ROI1 - 652.47 - 59.54	0.091646 ≑
ROI6 - 15368.82 - 1408	+b
	-0.25631 🖨
calibration file path	x^2*c
	-1E-9 🖨
calibration.ec	unit
auto update file	keV

2次式の適応は、赤枠の"file"を選択し、先ほど生成した calibration file を選択することで可能となります。

未知の物質を計測した時や非常に多くの種類のエネルギーを発している物質を計測した時などは、ROIの数が8個で物足りなくなります。 また、手動でROIを合わせると時間がかかったり、ROI設定も個人差による差が出てきます。

次に説明する" peak serch analysis"は、自動でピークを見つけ、自動で gauss fit を掛け、誤差なども計算でき、どんな計測対象でも煩雑 さなく計測することできます。

2.12. peak serch analysis 機能を使用した計測

node	APU101		gauss fit analysis							
CH CH	input rate	throughp	auto pole zero auto threshold	dead time	ROI No.	peak (keV)	centroid (keV)	peak (count)	gross (count)	gross (cps)
1	1.341k	1.35	spectrum calculation	7 4.1	ROI1 : ROI2 :	59.56 121.75	59.54 121.77	73.224k	541.445k 235.506k	207.53
		L,		_	R013 :	661.66	661.63	796.000	24.489k	9.38
					R014 :	1173.09	1173.21	1.952k	35.731k	13.69
					R015 :	1332.55	1332.48	1.653k	30.472k	11.68
					ROI6 :	1408.23	1408.00	742.000	14.716k	5.64
					R017 :	0.00	0.00	0.000	0.000	0.00
					ROIR -	0.00	0.00	0.000	0.000	0.00

peak serch analysis を開きます。

"Tool - peak serch analysis" をクリックします。

peak serch analysis の画面が開きます。

はじめに赤枠のファイル選択欄に先ほど作製した calibration file をセットします。

緑枠のフォルダマークをクリックしてポップアップ画面で選択してく ださい。

今回は計測中にリアルタイムに使用しますので、オレンジ枠中 data source は"online"に選択しました。

この状態でメインのアプリケーションから計測をスタートさせます。

ck c	entroid (keV)	centroid (ch)	gross (count) raw	net (count) raw	net (cps) raw	net (count) fit	net (cps) fit	DL (cps) fit	FWHM (ch)	FWHM	wV)
Ő.	39.70±0.05	434.75±0.52	12967	7499.2±135.8	28.418±0.515	4648.3±122.4	17.614±0.464	0.979	10.677±0.664	0.981	.061
ЭĽ	40.20±0.01	440.21±0.13	8459	5438.6±105.9	20.610±0.401	2361.0±83.4	8.950±0.316	0.662	4.999±0.437	0.459	040
	45.38±0.01	496.58±0.10	5289	2251.3±91.4	8.531±0.346	2270.3±91.6	8.603±0.347	0.702	7.152±0.228	0.657	621
	46.61±0.03	509.99±0.28	3015	703.3±74.0	2.665±0.280	\$47.2±72.3	2.074±0.274	0.477	5.504±0.640	0.506	059
٥C	59.54±0.00	650.77±0.01	\$3755	50262.4±236.9	190.467±0.905	49974.9±236.0	189.378±0.897	0.646	6.581±0.026	0.604	002
οr	121.78±0.00	1328.26±0.03	15548	14100.2±130.1	53.432±0.493	14129.0±128.7	53.541±0.488	0.470	7.302±0.056	0.671	.005

ヒストグラムの更新が始まり、右図のように生データ(黒)に対して、 ガウスフィット(赤)がかかる様子が確認されます。

> 今回は特に下記の 5 つのピークをピックアップしたいと思います。 59.54keV@Am-241、 121.78keV@Eu-152、 661.7keV@Cs-137、 1173.2keV@Co-60、 1332.5keV@Co-60、

ock ^d	centroid (keV)	centroid (ch)	gross (count) raw	net (count) raw	net (cps) raw	net (count) fit
	59.54±0.00	650.75±0.01	187486	175069.4±446.5	190.324±0.485	174004.5±442.5
	121.78±0.00	1328.24±0.02	55029	50153.6±244.3	54.524±0.266	50247.1±242.2
	39.60±0.03	433.66±0.28	42317	26378.8±241.8	28.677±0.263	13434.4±206.7
	40.19±0.01	440.00±0.10	32469	22686.7±203.8	24.663±0.222	11887.2±172.4
	45.38±0.00	496.51±0.05	17335	7067.5±171.5	7.683±0.186	7858.6±166.1
or	46.60±0.01	509.78±0.14	9915	1208.6±134.8	1.314±0.147	2027.5±132.9

赤枠のようにチェックを入れると、上位側に計算結果が保持されます。

lock	centroid (keV)	centroid (ch)	gross (coun raw	FWHM (ch) fit	FWHM (keV) fit
	59.55±0.00	657.64±0.01	323439	6.523±0.011	0.593±0.001
	121.78±0.00	1342.24±0.01	117921	7.343±0.022	0.667±0.002
•	661.63±0.00	7281.21±0.02	100465	12.868±0.034	1.170±0.003
	1173.20±0.00	12909.11±0.04	42914	16.587±0.068	1.508±0.006
	1332.48±0.00	14661.27±0.04	37275	17.548±0.069	1.595±0.006
	1408.00±0.01	15492.14±0.08	9922	17.975±0.138	1.634±0.013

対象の5つのピークを保持した様子です。

計算結果からエネルギー分解能や誤差、計数率など様々な情報が得ら れます。

今回は 1 時間計測において、1332.5keV のエネルギー分解能が 1.595keV と良好に出たことがわかります。

data source target CH		Standard deviation	🔄 peak search analysis	Version 1.4.1
online	CH1 🧹	sigma 🗸	File	
sensitivity level	search mode	update interval (sec)	open peak search file	Ctrl+O
3 🗸	auto 🔍	2	open histogram file	Ctrl+Shift+O
ROI range threshold(ch)		manual search	open trend file	
FWHMx6	100 🗘	start	save peak search file	Ctrl+S
Gauss+Step 🗸		clear all locks	save trend file	
calibration file path	1 I		save image	Ctrl+I
C:¥TechnoAP¥APP	101¥calibration.	fc		
			close	Ctrl+W

Peak serch analysis には過去に取得したデータを読み込み再確認する機能もあります。

赤枠のように"offline"を選択し、"File-open histogram file"を選択しファイルを読み込むことができます。

株式会社テクノエーピー

住所:〒312-0012 茨城県ひたちなか市馬渡2976-15 TEL:029-350-8011 FAX:029-352-9013 URL:http://www.techno-ap.com e-mail:info@techno-ap.com