# **Digital Pulse Processor**

# APV8104

# **Instruction Manual**

Version 1.2.2 2022, August

TechnoAP Co., Ltd.

Add: 2976-15 Mawatari, Hitachinaka-shi, Ibaraki, Postcode: 312-0012 TEL: +81-29-350-8011 FAX: +81-29-352-9013 URL: http://www.techno-ap.com e-mail: info@techno-ap.com

# Safety Precautions / Disclaimer

Thank you very much for purchasing the digitizer APV8108-14 (hereinafter "This board") of TechnoAP Co., Ltd. (hereinafter "We"). Please read this "Safety Precautions / Disclaimer" before using this device, be sure to observe the contents, and use it correctly.

We are not responsible for any damage caused by abnormality of device, detector, connected device, application, damage to failure, other secondary damage, even if accident caused by using this device.



# Prohibited matter

- This device cannot be used for applications requiring special quality and reliability related to human life, accident.
- This device cannot be used in places with high temperature, high humidity and high vibration.
- Do not apply a power supply that exceeds the rating.
- Do not turn the power on while other metals are in contact with the board surface.



- If there is smoking or abnormal heat generation in this device, turn off the power immediately.
- This board may not work properly in noisy environments.
- Be careful with static electricity.
- The specifications of this board and the contents of the related documents are subject to change without notice.

# Warranty policy

The warranty conditions of "our product" are as follows.

| Warranty period       | One year from date of purchase.                                                     |
|-----------------------|-------------------------------------------------------------------------------------|
| Ourseland and and and | Repair or replacement will be carried out in case of breakdown even though you      |
| Guarantee contents    | have used correctly according to this instruction manual within the warranty period |
|                       | We do not warranty if the cause of the failure falls under any of the following.    |
|                       | 1. Failure or damage due to misuse or improper repair or modification or            |
|                       | disassembly.                                                                        |
| Out of warrant        | 2. Failure and damage due to falling etc.                                           |
| Out of warranty       | 3. Breakdown / damage in harsh environments (high temperature / high humidity,      |
|                       | under zero, condensation etc.).                                                     |
|                       | 4. Causes other than the above, other than "our products".                          |
|                       | 5. Consumables.                                                                     |

| Saf | ety | Prec | autions / Disclaimer                  | 2  |
|-----|-----|------|---------------------------------------|----|
| 1.  |     | Ov   | erview                                | 5  |
| 1.  | 1.  |      | Overview                              | 5  |
| 1.  | 2.  |      | Features                              | 6  |
| 2.  |     | Spe  | ecifications                          | 7  |
| З.  |     | Ap   | pearance                              | 9  |
| 4.  |     | Set  | tup                                   |    |
| 4.  | 1.  |      | Installation of application           |    |
| 4.  | 2.  |      | Connection                            |    |
| 4.  | З.  |      | Setup of the network                  |    |
| 5.  |     | Ap   | plication window                      |    |
| 5.  | 1.  |      | Startup window                        |    |
| 5.  | 2.  |      | config tab                            |    |
| 5.  | 2.  | 1.   | LIST-WAVE part * Option               |    |
| 5.  | 2.  | 2.   | PSA part * Option                     |    |
| 5.  | 2.  | З.   | list-pile ups * Option                |    |
| 5.  | 2.  | 4.   | pile-up reject * Option               |    |
| 5.  | 2.  | 5.   | OR output * Optiong                   |    |
| 5.  | З.  |      | file tab                              |    |
| 5.  | 4.  |      | wave tab                              |    |
| 5.  | 5.  |      | spectrum tab                          |    |
| 5.  | 6.  |      | time spectrum tab                     |    |
| 5.  | 7.  |      | PSD tab                               |    |
| 6.  |     | Me   | asurement                             |    |
| 6.  | 1.  |      | Histogram mode                        |    |
| 6.  | 1.  | 1.   | Environment                           |    |
| 6.  | 1.  | 2.   | Power supply and connection           |    |
| 6.  | 1.  | З.   | Application startup and configuratiom |    |
| 6.  | 1.  | 4.   | Waveforme confirmation                |    |
| 6.  | 1.  | 5.   | Measurement start                     |    |
| 6.  | 1.  | 6.   | End of measurement                    |    |
| 6.  | 2.  |      | List mode                             |    |
| 6.  | 2.  | 1.   | Preapration                           |    |
| 6.  | 2.  | 2.   | Confirmation of energy spectrum       |    |
| 6.  | 2.  | З.   | Setting                               | 41 |
| 6.  | 2.  | 4.   | Measurement start                     | 41 |
| 6.  | 2.  | 5.   | End of measurement                    | 41 |
| 6.  | З.  |      | Time Spectrum Measurement             |    |

| 6. | З. | 1.   | Environment                                        |  |
|----|----|------|----------------------------------------------------|--|
| 6. | З. | 2.   | Power supply and connection                        |  |
| 6. | З. | З.   | Preapration                                        |  |
| 6. | З. | 4.   | Confirmation of energy spectrum                    |  |
| 6. | З. | 5.   | Setting                                            |  |
| 6. | З. | 6.   | End of measurement                                 |  |
| 6. | 4. |      | PSD mode * Option                                  |  |
| 6. | 4. | 1.   | Preaparation                                       |  |
| 6. | 4. | 2.   | Checking input waveforms                           |  |
| 6. | 4. | З.   | Checking energy spectrum                           |  |
| 6. | 4. | 4.   | Setting                                            |  |
| 6. | 4. | 5.   | Measurement start                                  |  |
| 6. | 4. | 6.   | End of measurement                                 |  |
| 7. |    | QL   | it                                                 |  |
| 8. |    | File | )                                                  |  |
| 8. | 1. |      | Histogram data file                                |  |
| 8. | 2. |      | Waveforme data file                                |  |
| 8. | З. |      | List data file                                     |  |
| 8. | 4. |      | PSA list data file * Option                        |  |
| 8. | 5. |      | List-wave and list pile-up wave data file * Option |  |
| 8. | 6. |      | PSD data file * Option                             |  |
| 9. |    | Tro  | publeshooting                                      |  |
| 9. | 1. |      | Connection error occurs                            |  |
| 9. | 2. |      | Command error occurs                               |  |
| 9. | З. |      | Histogram is not displayed                         |  |
| 9. | 4. |      | Change IP address                                  |  |

# 1. Overview

### 1. 1. Overview

TechnoAP's DPP (Digital Pulse Processor) product APV8104 (hereafter referred to as "this device") is a waveform analysis board equipped with 4 channels of high-speed, high-resolution ADC (1GHz, 14bit).

In addition to 1GHz real-time analysis by FPGA, high-speed processing without dead time by signal processing is realized with high time resolution and high throughput. All ADCs operate synchronously at 1GHz clock, and can be used for signal analysis from multiple high-speed scintillation detectors. Synchronous processing between multiple boards is also supported, allowing easy expansion to multi-CH analysis.

This document describes this equipment.

\* In the text, "CH" is case-sensitive for signal input channels and "ch" is case-sensitive for bin number channels.

\* In the text, "list" and "event" have the same meaning.

\* APV in the model name indicates the VME standard size board type. A separate VME power supply rack (such as our APV9007) is required to supply power to this board type. In addition, the type of model in which this board is housed in a unit (chassis) and AC power supply can be used directly is marked with APU instead of APV. For example, the model in which the VME-type APV8104 is installed in a unit is called APU8104. This manual also includes a description of the APU8104.

\* The 2-CH version is APV8102, and the functions are described as the same except for the number of CHs.

\* When -14 or -12 is included in the model number, it indicates that the resolution of the built-in ADC is 14 bits or 12 bits. For convenience, the -14 or -12 is omitted and the model APV8104 is used.

\* Functions can be added to this device as options. In this manual, such functions are clearly indicated as (optional).

### 1. 2. Features

The main features are as follows

- Applications include high-speed timing, high time resolution, high counting, waveform discrimination, particle discrimination (n/γ)
- Target detectors include scintillators (plastic, LaBr3(Ce), liquid scintillators, etc.), wire chambers and MPPCs, which can directly input output signals from photomultiplier tubes (PMTs) and FAST-NIM signals.
- Digital pulse processor acquires time and energy information by digital CFD and QDC.
- Waveform fitting provides high temporal resolution based on sampling interpolation.
- Neutron/gamma radiation discrimination PSD function, LIST-WAVE waveform information, etc. can be added as an option.



• Data recording via Gigabit Ethernet (TCP/IP)

Figure 1 DPP configuration

Configuration and data acquisition for DPP are performed by the supplied DPP application (hereafter referred to as "this application"). This application runs on Windows. Since communication with DPP is only via TCP/IP or UDP network communication, no special libraries are required, and the application can be used in environments other than Windows.

# 2. Specifications

| (1) Analog input                       |                                                                    |
|----------------------------------------|--------------------------------------------------------------------|
| <ul> <li>Number of channel</li> </ul>  | 4CH                                                                |
| Input range                            | ±1V                                                                |
| <ul> <li>Input impedance</li> </ul>    | 50Ω                                                                |
| Coarse gain                            | x1、x3                                                              |
| <ul> <li>Offset adjustment</li> </ul>  | ±1V                                                                |
| Rise-time of Input signal              | 1ns or less * In case of coarse gain 1x                            |
| (2) ADC                                |                                                                    |
| <ul> <li>Sampling frequency</li> </ul> | 1GHz                                                               |
| Resolution                             | 14bit                                                              |
| • SNR                                  | 68.3dBFS@605MHz                                                    |
| (3) Performance                        |                                                                    |
| QDC output                             | 2Mcps and more                                                     |
| <ul> <li>Time resolution</li> </ul>    | 3.90625ps                                                          |
| (4) Functions                          |                                                                    |
| <ul> <li>Operation mode</li> </ul>     | Histogram mode, List mode (time histogram), Wave mode              |
| Tranfer rate per event                 | Approx. 20Mbyte per second. In case of 16Byte (128Bit) per event.  |
| (5) Option                             |                                                                    |
| <ul> <li>Functions</li> </ul>          | PSD, histogram, Waveform List mode, Pile-up waveform list mode, OR |
|                                        | output                                                             |
| (6) Communication interface            |                                                                    |
| • LAN                                  | TCP/IP Gigabit Ethernet 1000Base-T for data transfer               |
|                                        | UDP for sending and receiving commands                             |
| (7) Current consumption                |                                                                    |
| +5V                                    | 3.0A (Max.)                                                        |
| +12V                                   | 0.8A (Max.)                                                        |
| -12V                                   | 0.4A (Max.)                                                        |
| (8) Forma                              |                                                                    |
| <ul> <li>VME type (VME6U)</li> </ul>   | APV8104                                                            |
| <ul> <li>Unit type</li> </ul>          | APU8104                                                            |
| (9) External dimensions                |                                                                    |
| <ul> <li>VME type (VME6U)</li> </ul>   | 20 (W) x 262 (H) x 187 (D) mm                                      |
| <ul> <li>Unit type</li> </ul>          | 300 (W) x 56 (H) x 335 (D) mm                                      |
| (10) Weight                            |                                                                    |
| <ul> <li>VME type (VME6U)</li> </ul>   | Approx. 430g                                                       |
| Unit type                              | Approix. 3100g                                                     |
| (11) PC environment                    |                                                                    |
| • OS                                   | Windows 7 or later, 32bit or 64bit or later                        |
| <ul> <li>Network interface</li> </ul>  |                                                                    |

Screen resolution Ful



Photo 2 APU8104

| (1)  | LED     | P (green) lights up when power is turned ON, V (orange) and E (red) are not used                                                                                                                                           |
|------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (2)  | CH1~CH4 | LEMO 00.250 compatible connector for signal input. Input range is $\pm 1$ V. Course gain is selectable from x1 and x3 from the application. Input impedance is 50 $\Omega$ .                                               |
| (3)  | RESET   | Communication function reset switch.                                                                                                                                                                                       |
| (4)  | CLK-I   | LEMO 00.250 compatible connector for external clock signal input. It is possible to synchronize with an external device by using an external clock. (When using an external clock, see When using an external clock below. |
| (5)  | CLK-O   | LEMO 00.250 compatible connector for external clock signal output.<br>Outputs 25MHz LVTTL signal with 50% duty cycle.                                                                                                      |
| (6)  | GATE    | LEMO 00.250 compatible connector for external GATE signal input; accepts LVTTL or TTL signals. Enables data acquisition while input is High.                                                                               |
| (7)  | VETO    | LEMO 00.250 compatible connector for external VETO signal input; accepts LVTTL or TTL signals; disables data acquisition while high.                                                                                       |
| (8)  | CLR     | LEMO 00.250 compatible connector for external clear signal input;<br>LVTTL or TTL logic signal input; clears counter data, which is time<br>information at the time of event detection, at the rising edge of High.        |
| (9)  | AUX     | LEMO 00.250 compatible connector for option. Outputs LVTTL OR timing logic signals, etc. according to specifications.                                                                                                      |
| (10) | LAN     | RJ45 connector for Ethernet cable. 1000Base-T.                                                                                                                                                                             |
|      |         |                                                                                                                                                                                                                            |

\* When external clock is used

With the power off, change the jumper JP17 to 1-6CPU on the board in the photo below, input a 25MHz, 50% duty cycle LVTTL or TTL signal to CLK-I, and then turn the power on.



Photo 3 JP17



Photo 4 Internal clock operation (3-4: INT jumper) Photo 5 Externla clock operation (1-6: CPU jumper)



# 4. Setup

## 4. 1. Installation of application

This application runs on Windows. When using this application, it is necessary to install the EXE (executable format) file of this application and the LabVIEW runtime engine from National Instruments on the PC to be used.

Installation of this application is performed by the installer included on the accompanying CD. The installer includes the EXE (executable format) file and the LabVIEW runtime engine, which can be installed at the same time. The installation procedure is as follows.

- (1) Log in to Windows with administrative privileges.
- (2) Run setup.exe in the Application (or Installer) folder on the accompanying CD-ROM. Proceed with the installation in an interactive manner. The default installation directory is "C:¥TechnoAP". In this folder, the application's executable file and the configuration file config.ini, which contains the configuration values, will be installed.
- (3) Start button TechnoAP Execute APP8104 (or APP8102, bit number or option name may be added).

To uninstall, go to Add or Remove Programs and select APV8108 to remove it.

# 4. 2. Connection

Connect this device and PC with an Ethernet cable; use a crossover cable depending on the PC. When using a hub, use a switching hub.

# 4. 3. Setup of the network

Check the communication status of this device and this application by the following procedure.

(1) Turn on the PC and change the network information of the PC.

| IP address      | : | 192.168.10.2 * | Addresses not assigned to this device |
|-----------------|---|----------------|---------------------------------------|
| Sub-net mask    | : | 255.255.255.0  |                                       |
| Default gateway | : | 192.168.10.1   |                                       |

(2) Turn on the VME Crate power supply and wait for about 10 seconds after turning on the power.

(3) Check the communication status between the PC and the device by executing the ping command at the Windows command prompt to see if the device and the PC are connected.

The IP address of the device is located on the board or on the back of the unit. The factory default network information for this device is as follows.

| IP address      | : | 192.168.10.128 |
|-----------------|---|----------------|
| Sub-net mask    | : | 255.255.255.0  |
| Default gateway | : | 192.168.10.1   |

> ping 192.168.10.128

| C:¥WINDOWS¥system32¥cmd.exe                                                                                                                                                                      | _                                                |                                                   | × |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|---|
| Microsoft Windows [Version 10.0.19042.1083]<br>(c) Microsoft Corporation. All rights reserved                                                                                                    | d.                                               |                                                   | ^ |
| C:¥Users¥Administrator>ping 192.168.10.128                                                                                                                                                       |                                                  |                                                   |   |
| 192.168.10.128 に ping を送信しています 32 バー<br>192.168.10.128 からの応答: バイト数 =32 時間 <<br>192.168.10.128 からの応答: バイト数 =32 時間 <<br>192.168.10.128 からの応答: バイト数 =32 時間 <<br>192.168.10.128 からの応答: バイト数 =32 時間 < | イトの5<br>(1ms 11<br>(1ms 11<br>(1ms 11<br>(1ms 11 | データ:<br>[L=32<br>[L=32<br>[L=32<br>[L=32<br>[L=32 |   |
| 192.168.10.128 の ping 統計:<br>パケット数: 送信 = 4、受信 = 4、損失 = 0(<br>ラウンド トリップの概算時間(ミリ秒):<br>最小 = Oms、最大 = Oms、平均 = Oms                                                                                  | (0% の <del>1</del>                               | 損失)、                                              |   |
| C:¥Users¥Administrator>                                                                                                                                                                          |                                                  |                                                   | J |

Figure 2 Confirm communication connection, execute ping command

(4) Launch this application. Search for APV8104 from the shortcut icon APV8104 on the desktop or the Windows button and launch it.

(If an error message is displayed when this application is launched, stating that the connection with this device has failed, please refer to the troubleshooting described below.

# 5. Application window

### 5. 1. Startup window

When this application is run, the following startup screen will appear.

|      | ev1 🗸       | IP ac                   | dres      | 192.       | 168.1                 | 10.13        | 28                       | men | ю                              |                    |                             |                       |                    |                       |               |                        |                   |                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                             |                          |                       | acq.                        |                            | save                   | error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mode                | wave                |         |    |  |
|------|-------------|-------------------------|-----------|------------|-----------------------|--------------|--------------------------|-----|--------------------------------|--------------------|-----------------------------|-----------------------|--------------------|-----------------------|---------------|------------------------|-------------------|---------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------|--------------------------|-----------------------|-----------------------------|----------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|---------|----|--|
|      | output      | outp<br>rate(c          | ut<br>ps) | dead<br>(% | dead<br>(9            | time<br>>)   | ,                        |     |                                |                    | ROI                         |                       |                    |                       | ak ce         | ntroid<br>(ch)         | (                 | peak<br>(count)     | gr<br>(co             | oss<br>unt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gross<br>(cps)           | (4                          | net<br>count)            | net<br>(cps)          | FWHM<br>(ch)                | 1 FWH<br>(%                | IM F                   | WHM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FWTM                | measurement<br>mode | real ti | me |  |
| 1:   | 0.00        | 0.0                     | 0         | 0.         | .00                   |              |                          |     |                                |                    |                             | ROI1 :                | 1                  | 0                     | 0.00          |                        | 0.000             | 0.                  | 000                   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                        | 0.000                       | 0.000                    | 0.0                   | 0.0                         | 00                         | 0.000                  | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | measurement<br>time | 24:00:00            |         |    |  |
| 3:   | 0.00        | 0.0                     | 0         | 0.         | .00                   |              |                          |     |                                |                    |                             | ROI3 :                |                    | 0                     | 0.00          |                        | 0.000             | 0                   | .000                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                        | 0.000                       | 0.000                    | 0.0                   | 0.0                         | 00                         | 0.000                  | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | real time           | 00:00               | 0:00    |    |  |
| :    | 0.00        | 0.0                     | 0         | 0.         | .00                   |              |                          |     |                                |                    |                             | ROI4 :                | _                  | 0                     | 0.00          |                        | 0.000             | 0                   | .000                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                        | 0.000                       | 0.000                    | 0.0                   | 0.0                         | 00                         | 0.000                  | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | live time           | 00:00:00            |         |    |  |
|      |             |                         |           |            |                       |              |                          |     |                                |                    |                             | ROIS :                | i                  | 0                     | 0.00          |                        | 0.000             | 0.                  | .000                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                        | 0.000                       | 0.000                    | 0.0                   | 0.0                         | 00                         | 0.000                  | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | file size(Byte)     | 0.                  | .000    |    |  |
|      |             |                         |           |            |                       |              |                          |     |                                |                    |                             | RO17 :<br>RO18 :      |                    | 0                     | 0.00          |                        | 0.000             | 0.                  | .000<br>.000          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                        | 0.000                       | 0.000                    | 0.0                   | 0.0                         | 00<br>00                   | 0.000                  | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sampling            | <b>1</b> G          |         |    |  |
| nfig | file wave   | spect                   | rum       | time       | spectru               | um           | PSD                      |     |                                |                    |                             |                       |                    |                       |               |                        |                   |                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                             |                          |                       |                             |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                     |         |    |  |
| ble  | signal type | signai<br>delay<br>(ns) | 8         | polarity   | anak<br>gain<br>(mult | og<br>tiple) | analog<br>offset<br>(mV) |     | baselin<br>restore<br>filter(µ | e<br>r ti<br>s) (i | hresho<br>digit)            | ld timir<br>type      | 19                 | CFD<br>funct<br>(mult | ion<br>iple)  | CFD<br>delay<br>(digit | CF<br>via<br>) (d | FD<br>alk<br>ligit) | QDC<br>sum/pe         | QD<br>ak pre<br>(ns)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C<br>trigger<br>)        | QDC<br>filter<br>(ns)       | QDC<br>integra           | al fu<br>(ns) (m      | DC<br>Il scale<br>sultiple) | QDC<br>LLD<br>(digit)      | QU<br>UL<br>(di        | D<br>git)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                     |         |    |  |
| 11 : | nomal sig 🗸 | 0                       | •         | pos 🗸      | ×1                    | ~            | 0.0                      |     | 129µ                           | ~ -                | 50 4                        | CFD                   | ~                  | ×0.21                 | L 🗸           | 10ns                   | ~ 20              |                     | sum                   | ~ -8r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ns 🗸                     | 10ns 🗸                      | 200                      | <b>\$</b>   1/        | 1 🗸                         | 10                         | <b>\$</b>   81         | 90   <b>\$</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                     |         |    |  |
| 12 : | nomal sig   | 0                       |           | pos v      | ×1                    | ~            | 0.0                      |     | 129µ                           | ~ -                | 50 K                        | CFL                   | > ~                | x0.21                 | ×             | 10ns                   | ~ 20              |                     | sum                   | ~ -8r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15 🗸                     | 10ns V                      | 200                      | P 1/                  | 1 ~                         | 10                         | I € 81                 | 90 ( <del>9</del> )<br>90 ( <b>1</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                     |         |    |  |
| H4   | nomal sig 🗸 | 0                       | •         | pos 🗸      | x1                    | ~            | 0.0                      | 4   | 129µ                           | ~ .                | 50 4                        | CFI                   |                    | x0.21                 |               | 10ns                   | ~ 20              |                     | sum                   | <ul> <li>✓</li> <li>✓</li></ul> | 15 ~                     | 10ns V                      | 200                      | ↓ 1/                  | 1 ~                         | 10                         | <ul> <li>81</li> </ul> | 90 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                     |         |    |  |
|      |             |                         |           |            |                       |              |                          |     | r!                             | IST-V              | VAVE                        |                       |                    |                       |               |                        |                   | PS                  | Α                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                             |                          |                       |                             |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                     |         |    |  |
|      |             |                         |           |            |                       |              |                          |     |                                |                    | list-wa<br>delay<br>(digit) | ve list<br>dat<br>(di | wave<br>ta<br>git) | list-v<br>sam         | wave<br>pling | bir<br>fix o<br>(dig   | jata<br>jit)      |                     | rise<br>stari<br>(dig | r<br>tont s<br>it) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ise<br>top cri<br>digit) | fall<br>start cn<br>(digit) | fall<br>t stop<br>(digit | to<br>cnt sta<br>) (d | tal<br>art cnt<br>igit)     | total<br>stop c<br>(digit) | PS/<br>nt full<br>(mu  | scale<br>ltiple)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                     |         |    |  |
|      |             |                         |           |            |                       |              |                          |     | c                              | H1:                | 10                          | 20                    | 0                  | Ins                   | ~             | / 844                  | 13 🗢              | CH:                 | 1: 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                       | ¢  8  :                     | 5                        | • 1                   | ¢                           | 20                         | 1/1                    | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                     |         |    |  |
|      | 1000020     |                         |           |            |                       |              |                          |     | C                              | H2 :               | 10                          | 20                    | 0                  | Ins                   | ~             | 84                     | 13 🔍              | CH:                 | 2: 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                       | Pi 8   6                    | 5                        | 1                     | 191                         | 20                         | <b>♀</b>   1/1         | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                     |         |    |  |
|      | mode        | in the second           |           |            |                       |              |                          |     | -                              | нз :<br>ши -       | 10                          | 20                    | 0.14               | 105                   | ~             | 24                     | 12 1              | CH.                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10 10                    |                             |                          | 1                     | (*)<br>141                  | 20                         | I 1/1                  | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                     |         |    |  |
|      |             | ~                       |           |            |                       |              |                          |     |                                |                    |                             |                       | × 13               | 1                     |               |                        | te tell           | Cit                 | - I.                  | and la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                             |                          | - 10                  | 1.5.1                       |                            | teal lave              | 1. March 1. |                     |                     |         |    |  |
|      | real time   | obe                     |           |            |                       |              |                          |     |                                |                    |                             |                       |                    |                       |               |                        |                   |                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                             |                          |                       |                             |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                     |         |    |  |
|      | measurement | Limit                   |           |            |                       |              |                          |     |                                |                    |                             |                       |                    |                       |               |                        |                   |                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                             |                          |                       |                             |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                     |         |    |  |
|      | time(sec)   |                         |           |            |                       |              |                          |     |                                |                    |                             |                       |                    |                       |               |                        |                   |                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                             |                          |                       |                             |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                     |         |    |  |

Figure 3 Startup window (may differ from image due to options and updates)

• Menu

| File - open config         | Load configuration file                                           |
|----------------------------|-------------------------------------------------------------------|
| File - open histogram      | Load histogram data file                                          |
| File - open wave           | Load waveform data file                                           |
| File - open PSD            | Load CSV data files for PSD 2D graphs.                            |
| File - open list for PSD   | Load reading list data files for PSD 2D graphs                    |
| File - save config         | Save current settings to a file                                   |
| File - save histogram      | Save current histogram data to file                               |
| File - save wave           | Save waveform data file                                           |
| File - save PSD            | Save CSV data files for PSD 2D graphs                             |
| File - save image          | Save this application screen as PNG format image                  |
| File - quit                | Quit application                                                  |
| Edit - copy setting of CH1 | CH1 settings in the CH tab are reflected in all other CH settings |
| Edit - IP configuration    | Change the IP address of this device                              |
| Edit – instruction manual  | Display instruction manual.                                       |

| calibration            | Execute calibration when there is a disturbance in the waveform.                                                                                             |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Config                 | Set all items to this device                                                                                                                                 |
| Clear                  | Initialize histogram data in this device                                                                                                                     |
| Start                  | Start measurement to this device                                                                                                                             |
| Stop                   | Stop measurement to this device                                                                                                                              |
| • tab                  |                                                                                                                                                              |
| config                 | Settings related to input CH.                                                                                                                                |
| file                   | Settings related to file storage of data.                                                                                                                    |
| wave                   | Display of waveform data.                                                                                                                                    |
| spectrum               | Spectrum (histogram) display and ROI (Region Of Interest) setting.                                                                                           |
| timespectrum           | Display of time difference spectra of two CHs set in advance from the time information of the list data, and the setting of ROI (Region Of Interest) and the |
|                        | display of the result of time resolution calculation.                                                                                                        |
| PSD                    | 2D spectra in QDC data set for CH1 and CH2, respectively, from various information in the list data.                                                         |
| • CH part              |                                                                                                                                                              |
| output count           | Total number of counts processed by the signal                                                                                                               |
| output rate(cps)       | Output count per second                                                                                                                                      |
| deadtime(%)            | Dead time ratio. dead time / real time * 100.                                                                                                                |
| ROI part               |                                                                                                                                                              |
| Displays the calculate | ed results between ROIs                                                                                                                                      |
| peak(ch)               | Maximum count ch                                                                                                                                             |
| centroid(ch)           | Center value calculated from the sum of all counts (ch)                                                                                                      |
| peak(count)            | Maximum count                                                                                                                                                |
| gross(count)           | Sum of counts between ROIs                                                                                                                                   |
| gross(cps)             | gross (count) per second                                                                                                                                     |
| net(count)             | Sum of counts minus background between ROIs                                                                                                                  |
| net(cps)               | Nets (count) per second                                                                                                                                      |
| FWHM(ch)               | Half-width (ch)                                                                                                                                              |
| FWHM(%)                | Half-width (%). Half width / ROI defined energy x 100                                                                                                        |
| FWHM                   | Half-width                                                                                                                                                   |
| FWTM                   | 1/10 width                                                                                                                                                   |
| device                 | Select the device to be measured                                                                                                                             |
| IP address             | IP address of the target device. Define in the configuration file and display the IP                                                                         |
|                        | address of the device selected in device.                                                                                                                    |
| memo                   | Optional text box. Use for measurement data management.                                                                                                      |

| acq. LED         | Flashing during measurement.                                                            |
|------------------|-----------------------------------------------------------------------------------------|
| save LED         | Flashes during data storage                                                             |
| error LED        | Error indication                                                                        |
| mode             | Displays the name of the operating mode being set.                                      |
| measurement mode | Measurement mode, displaying real time or live time.                                    |
| measurement time | Displays the set measurement time.                                                      |
| real time        | Real time (actual measurement time) of valid first CH.                                  |
| live time        | Live time (effective measured time) of the effective first CH. Calculation: real time - |
|                  | dead time                                                                               |
| file size(byte)  | Displays the size of the list data file being saved. Displays the size in SI notation   |
|                  | (0.789M, 10.100M, 1.230G, etc.).                                                        |
| sampling         | Displays the sampling frequency of the target device. Unit is Hz                        |
|                  |                                                                                         |

# 5. 2. config tab

| config       | file                                                             | wave                                                     |          | spectru               | m | t     | imes        | pectru                 | m          | PSD                      |          |                               |                 |                           |          |                         |            |                           |            |                        |              |                     |                |             |                          |                       |               |                       |               |                       |               |                            |                |                         |           |                          |              |
|--------------|------------------------------------------------------------------|----------------------------------------------------------|----------|-----------------------|---|-------|-------------|------------------------|------------|--------------------------|----------|-------------------------------|-----------------|---------------------------|----------|-------------------------|------------|---------------------------|------------|------------------------|--------------|---------------------|----------------|-------------|--------------------------|-----------------------|---------------|-----------------------|---------------|-----------------------|---------------|----------------------------|----------------|-------------------------|-----------|--------------------------|--------------|
| CH<br>enable | signa                                                            | type                                                     | 50(      | ignal<br>delay<br>ns) | , | polar | rity        | analo<br>gain<br>(mult | g<br>iple) | analog<br>offset<br>(mV) |          | baselin<br>restor<br>filter(µ | ne<br>er<br>us) | thresh<br>(digit)         | old      | timing<br>type          | i.         | CFD<br>functio<br>(multip | on<br>ole) | CFD<br>delay<br>(digit | )            | CFC<br>wall<br>(dig | D<br>k<br>jit) | QDC<br>sum/ | peak                     | QDC<br>pretri<br>(ns) | gger          | QDC<br>filter<br>(ns) |               | QDC<br>integ<br>range | ral<br>e(ns)  | QDC<br>full so<br>(mult    | cale<br>ciple) | QDC<br>LLD<br>(digit    | :)        | QDC<br>ULD<br>(digi      | ;<br>t)      |
| CH1 :        | noma                                                             | al sig 🛛                                                 | ~        | 0 14                  | • | pos   | $\sim$      | x1                     | ~          | 0.0                      | ¢        | 129µ                          | $\sim$          | 50                        | ¢        | CFD                     | ~          | x0.21                     | ~          | 10ns                   | $\sim$       | 20                  | -              | sum         | $\sim$                   | -8ns                  | ~             | 10ns                  | $\sim$        | 200                   | -             | 1/1                        | ~              | 10                      | -         | 8190                     | ÷            |
| CH2 :        | noma                                                             | al sig                                                   | ~        | 0 14                  | ÷ | pos   | $\sim$      | ×1                     | $\sim$     | 0.0                      | <b> </b> | 129µ                          | $\sim$          | 50                        | ÷        | CFD                     | $\sim$     | x0.21                     | $\sim$     | 10ns                   | $\sim$       | 20                  | -              | sum         | $\sim$                   | -8ns                  | $\sim$        | 10ns                  | $\sim$        | 200                   | -             | 1/1                        | ~              | 10                      | 1         | 8190                     | l\$          |
| CH3          | noma                                                             | al sig 🛛                                                 | ~        | 0 14                  | • | pos   | ~           | ×1                     | ~          | 0.0                      | \$       | 129µ                          | ~               | 50                        | ÷        | CFD                     | $\sim$     | ×0.21                     | ~          | 10ns                   | ~            | 20                  | 4              | sum         | $\sim$                   | -8ns                  | ~             | 10ns                  | ~             | 200                   | 4             | 1/1                        | ~              | 10                      | -         | 8190                     | -            |
| CH4          | noma                                                             | al sig                                                   | ~        | 0 14                  | • | pos   | ~           | ×1                     | $\sim$     | 0.0                      | ¢        | 129µ                          | $\sim$          | 50                        | ¢        | CFD                     | $\sim$     | x0.21                     | $\sim$     | 10ns                   | $\sim$       | 20                  | -              | sum         | $\sim$                   | -8ns                  | ~             | 10ns                  | $\sim$        | 200                   | +             | 1/1                        | $\sim$         | 10                      | 4         | 8190                     | -            |
|              |                                                                  |                                                          |          |                       |   |       |             |                        |            |                          |          |                               | UST             | list-w<br>delay<br>(digit | ave<br>( | list-w<br>data<br>(digi | rave<br>t) | list-w<br>samp            | ave        | blr<br>fix o<br>(dig   | data<br>iit) |                     | -PSA           | ri<br>5 ()  | se<br>tart cri<br>digit) | t sto<br>(di          | p cnt<br>git) | fall<br>star<br>(dig  | t cnt<br>git) | fall<br>stop<br>(dig  | o cnt<br>git) | total<br>start o<br>(digit | cnt            | total<br>stop<br>(digit | cnt<br>t) | PSA<br>full sc<br>(multi | ale<br>iple) |
|              |                                                                  |                                                          |          |                       |   |       |             |                        |            |                          |          | 3                             | CH1             | : 10                      | 4        | 200                     | ¢          | 1ns                       | ~          | 844                    | 43 🗢         | 1                   | CH1            | : 1         | k                        | 10                    | H             | 8                     | 4             | 5                     | ¢             | 1                          | -              | 20                      | \$        | 1/1                      | $\sim$       |
|              |                                                                  |                                                          |          |                       |   |       |             |                        |            |                          |          | 2                             | CH2             | : 10                      | \$       | 200                     | 4          | 1ns                       | ~          | 84                     | 43 🗘         | 8                   | CH2            | : 1         | k                        | 10                    | H\$           | 8                     | 4             | 5                     | ¢             | 1                          | 4              | 20                      | ¢         | 1/1                      | $\sim$       |
|              | mode                                                             |                                                          |          |                       |   |       |             |                        |            |                          |          |                               | CH3             | : 10                      | 4        | 200                     | ¢          | 1ns                       | ~          | 84                     | 43 🗢         | 1                   | CH3            | : 1         | ŀ                        | 10                    |               | 8                     | 4             | 5                     | ¢             | 1                          | +              | 20                      | ¢         | 1/1                      | $\sim$       |
|              | wave                                                             |                                                          |          | $\sim$                |   |       |             |                        |            |                          |          |                               | CH4             | : 10                      | 4        | 200                     | ¢          | 1ns                       | ~          | 844                    | 43 🗢         | 1                   | CH4            | : 1         | . E                      | 10                    | H             | 8                     | •             | 5                     | ÷             | 1                          | ÷              | 20                      | <b>\$</b> | 1/1                      | $\sim$       |
|              | measu<br>real t<br>measu<br>time(:<br>24:00<br>list real<br>1600 | urment<br>ime<br>uremeni<br>sec)<br>0:00<br>ad byte<br>0 | mod<br>t | e<br>><br>•)          |   |       | time<br>PSD | spectr<br>ON/C         | um (       | DN/OFF                   |          | L                             |                 |                           |          |                         |            |                           |            |                        |              |                     |                |             |                          |                       |               |                       |               |                       |               |                            |                |                         |           |                          |              |

Figure 4 config tab

| CH enable              | CH Enable/E    | CH Enable/Disable. Normally, all CHs are set to "enable" state            |  |  |  |  |  |  |
|------------------------|----------------|---------------------------------------------------------------------------|--|--|--|--|--|--|
| signal type            | Select the in  | put waveform type                                                         |  |  |  |  |  |  |
|                        | fast sig       | When NIM or Timing signal is input.                                       |  |  |  |  |  |  |
|                        | normal sig     | When other than fast sig.                                                 |  |  |  |  |  |  |
| signal delay (ns)      | The input sig  | nal is delayed inside this device. Maximum delay time is 2000ns (2us).    |  |  |  |  |  |  |
| polarity               | Input signal p | polarity. Select pos for positive polarity or neg for negative polarity.  |  |  |  |  |  |  |
| analog gain (multiple) | Select the ar  | nalog gain (amplification value) from x3 or x1.                           |  |  |  |  |  |  |
| analog offset (mV)     | Selects the a  | analog offset. The range is $\pm 1000$ mV. Normally set to 0.0 mV.        |  |  |  |  |  |  |
| threshold (digit)      | Sets the thre  | shold for waveform acquisition of the input signal. The unit is digits.   |  |  |  |  |  |  |
|                        | The setting ra | ange is 0 to 8191. set a value greater than the noise level while viewing |  |  |  |  |  |  |
|                        | the raw wave   | eform in wave mode.                                                       |  |  |  |  |  |  |
|                        |                |                                                                           |  |  |  |  |  |  |

threshold TDC, QDC calc enable. rise edge

Set above noise  $\mathcal{D}_{\mathcal{N}}$ ٨

Constant Fraction Timing of APV8104 and APV8508 is realized by digital signal processing using FPGA



s(n) = fv(n) - v(n - delay)

The digital signal processing algorithm we have developed uses a polynomial approximation based on the least-squares method from sampled waveform data

$$L(a, b, c) = \sum_{i=1}^{N} \{y_i - (ax_i^2 + bx_i + C)\}^2$$

The time information is calculated more precisely by finding the parameters a, b, and c that minimize the time information (i.e., the time information of the time of the data) and obtaining interpolation of the zero-crossing point (WALK) for CFD and the threshold point for leading edge.

Furthermore, by using FPGAs to perform pipelined calculations, a series of calculations is performed very quickly, with a calculation time of approximately 100 ns or less, resulting in low dead time and high throughput.





Select the waveform to be time-stamped from CFD or LE waveform.

LE Leading Edge Timing (LET and LED agree)

The timing at which a certain trigger level t is reached. (Trigger acquisition timing is different for different wave heights, such as 'a' and 'b', and different times for different wave heights.



Figure 5 Thinking of Leading Edge Timing

CFD Constant Fraction Disicriminator Timing

CFD, the zero-crossing timing of waveforms g and h in the figure below, is characterized by the fact that if the rise time of the waveform is the same, it is constant even if the wave height changes





Figure 6 Thinking of Constant Fraction Disicriminator Timing

CFD function Magnification to reduce the original waveform for CFD waveform shaping, select from 0.03x, 0.06x, 0.09x, 0.12x, 0.15x, 0.18x, 0.21x, 0.25x, 0.28x, 0.31x, 0.34x, 0.37x, 0.40x, 0.43x, 0.46x Raw waveform x0.06 x0.46 CFD delay Sets the CFD delay time; for the APV8108, set from 1ns to 16ns in 1ns increments Raw waveform 2ns 24ns CFD walk Sets the threshold value to be time-stamped. The unit is in digits, and the value is set near the 0 crossing position while watching the CFD waveform in wave mode. Time Stamp WALK



```
QDC ULD (digit) Sets the ULD (Upper Level Discriminator) of the QDC. The unit is digits. Set to a value greater than the LLD. The setting range is from 0 to 8191.
```

| mode                 | Select the operation mode |                                                                                 |  |  |  |  |  |  |
|----------------------|---------------------------|---------------------------------------------------------------------------------|--|--|--|--|--|--|
|                      | hist                      | Integrates the input signal and displays the spectrum                           |  |  |  |  |  |  |
|                      | wave                      | Digitizes input signals and displays waveforms                                  |  |  |  |  |  |  |
|                      | list                      | For an input signal, time, CH, and integral information can be output and       |  |  |  |  |  |  |
|                      |                           | saved as a binary file as a single event. It is also used to obtain time        |  |  |  |  |  |  |
|                      |                           | spectra and PSD 2D histograms.                                                  |  |  |  |  |  |  |
|                      | list-wave                 | Waveform data is appended after the list data and output. * Option              |  |  |  |  |  |  |
|                      | list-pileup               | Waveform data is inserted in the list data and output in case of pile-up.       |  |  |  |  |  |  |
|                      |                           | * Option                                                                        |  |  |  |  |  |  |
|                      | list-coinc-wave           | The coincidence list data and waveform data are output together. (The           |  |  |  |  |  |  |
|                      |                           | coincidence is valid only for CH1 and CH2. * Option                             |  |  |  |  |  |  |
|                      | list-com                  | Used when timing is synchronized among multiple boards, CH1 is used             |  |  |  |  |  |  |
|                      |                           | as a common signal input pin to input a fast pulse with low jitter after start. |  |  |  |  |  |  |
|                      |                           | * Option                                                                        |  |  |  |  |  |  |
| measurement mode     | Sele                      | ect real time or live time. Measurement is completed in the selected time       |  |  |  |  |  |  |
|                      | mod                       | de                                                                              |  |  |  |  |  |  |
| measurement time     | Specify                   | the measurement time. The maximum is 8760 hours.                                |  |  |  |  |  |  |
| list read byte(byte) | Sets the                  | size of the list data to be read out once. 10 bytes per list data size per      |  |  |  |  |  |  |
|                      | event, the                | e setting range is from 1000 bytes to 100,000 bytes in 1000 byte                |  |  |  |  |  |  |
|                      | incremen                  | ts. 1600 bytes per list data size per event, the setting range is from 1600     |  |  |  |  |  |  |
|                      | bytes to 1                | 60,000 bytes in 1600 byte increments. If the list data size per event is        |  |  |  |  |  |  |
|                      | 1600 byte                 | es, the setting range is from 1600 bytes to 160,000 bytes in 1600 byte          |  |  |  |  |  |  |
|                      | incremen                  | ts.                                                                             |  |  |  |  |  |  |
| time spectrum ON/OF  | -F 5                      | Selects whether to display the time spectrum while acquiring list data in       |  |  |  |  |  |  |
|                      | li                        | st mode. Uncheck this checkbox if you wish to acquire list data only. Note      |  |  |  |  |  |  |
|                      | t                         | hat turning ON at high counts slows down the acquisition of list data.          |  |  |  |  |  |  |
| PSD ON/OFF           | Select whether            | to display PSD 2D histograms, etc. while acquiring list data in list mode.      |  |  |  |  |  |  |
|                      | Uncheck this c            | heckbox if you wish to acquire list data only. (Note that turning ON at high    |  |  |  |  |  |  |
|                      | counts slows d            | lown the acquisition of list data. * Option                                     |  |  |  |  |  |  |

#### 5. 2. 1. LIST-WAVE part \* Option

Waveform data can be added during list mode.

|       | list-w<br>delay<br>(digi | /ave<br>/<br>t) | list-w<br>data<br>(digit | ave<br>) | list-wa<br>sampl | ing    | blr<br>fix data<br>(digit) |
|-------|--------------------------|-----------------|--------------------------|----------|------------------|--------|----------------------------|
| CH1:  | 10                       | \$              | 200                      | ¢        | 1ns              | $\sim$ | 8443 🖨                     |
| CH2:  | 10                       | \$              | 200                      | <b>\</b> | 1ns              | $\sim$ | 8443 🖨                     |
| CH3 : | 10                       | \$              | 200                      | -        | 1ns              | $\sim$ | 8443 🖨                     |
| CH4 : | 10                       | -               | 200                      | <b>I</b> | 1ns              | $\sim$ | 8443 🗢                     |

Figure 7 list-wave related setting

LIST-WAVE part
 list-wave delay(digit) Settings for list-wave or list-pileup mode. Adjusts the delay of the acquisition waveform. Setting range is from 0digit to 31digit. 1digit is for 8 waveforms.
 list-wave data(digit) Parameter for list-pileup mode or list-wave. Sets the number of data points for pileup waveform output. Setting range is from 8 to 4000 points.
 list-wave sampling Parameter for list-pileup mode or list-wave. You can specify the sampling of the waveform data; for APV8104, select from 1ns, 2ns, 4ns, 8ns, 16ns, 32ns, 64ns, 128ns, 256ns, 512ns, and 1024ns.

#### 5. 2. 2. PSA part \* Option

PSA (Pulse Shaping Analysis) operation settings, including RISE for the rising edge of the waveform, FALL for the falling edge, and TOTAL for the entire waveform, as additional data in the list mode. In PSA operation, if the input waveform is negative polarity, it is inverted to positive polarity, and the waveform is always positive polarity.

|       | rise<br>start<br>(digit | cnt<br>t) | rise<br>stop<br>(digit | cnt<br>t) | fall<br>start<br>(digit | cnt<br>t) | fall<br>stop<br>(digi | cnt<br>t) | total<br>start<br>(digit | cnt<br>t) | total<br>stop<br>(digi | cnt<br>t)  | PSA<br>full s<br>(mult | cale<br>tiple |
|-------|-------------------------|-----------|------------------------|-----------|-------------------------|-----------|-----------------------|-----------|--------------------------|-----------|------------------------|------------|------------------------|---------------|
| CH1 : | 498                     | ¢         | 1638                   |           | 1000                    | <b>+</b>  | 1638                  |           | 498                      | ¢         | 1638                   | ( <b>†</b> | 1/1                    | $\sim$        |
| CH2 : | 1                       | \$        | 10                     | \$        | 8                       | <b> </b>  | 5                     | ¢         | 1                        | \$        | 20                     | \$         | 1/1                    | ~             |
| CH3 : | 1                       | 4         | 10                     | -         | 8                       | <b> </b>  | 5                     | -         | 1                        | 4         | 20                     | -          | 1/1                    | ~             |
| CH4 : | 1                       | \$        | 10                     | -         | 8                       | <b>I</b>  | 5                     | <b>\$</b> | 1                        | ¢         | 20                     | ÷.         | 1/1                    | ~             |



#### PSA part

rise start cnt(digit) The start position of the target range of RISE for the integral value of the rising edge, from the position beyond the threshold to the range before the threshold. The setting range is from 1 to 498 (498ns=498 x 1ns).

rise stop cnt(digit) This is the end position of the target range of the integral value RISE for the rising part. Set the range of integration from the rise start cnt. The setting range is from 1 to 16383 (16363ns=16383 x 1ns).

Example of RISE value calculation:

Setting example: In the case of threshold: 50, rise start cnt: 5, rise stop cnt: 8, and PSA full scale: 1/1, the green line in the figure below is integrated for 8 points from 5 points before the point where the threshold is exceeded. The integral value is then multiplied by PSA full scale to obtain the RISE value of the list data.



Figure 9 Example of RISE coverage setting

- fall start cnt(digit) The start position of the target range of the falling integral value FALL. The setting range is from 1 to 16383 (16383ns = 16383 × 1ns).
- fall stop cnt(digit) This is the end position of the target range of the falling integral value FALL. Set the range of integration from the fall start cnt. The setting range is from 1 to 16383 (16383ns

= 16383 x 1ns).

Example of FALL value calculation:

For example, if threshold: 50, fall start cnt: 5, fall stop cnt: 25, and PSA full scale: 1/1, the FALL value exceeds threshold and integrates 25 points from the 5th point, the blue boxed area in the figure below. The integrated value is then multiplied by PSA full scale to obtain the FALL value of the list data.



Figure 10 Example of FALL coverage setting

- total start cnt(digit) The start position of the target range of the whole waveform integral value TOTAL. Set the range from the point where the threshold is exceeded to the point before the threshold. The setting range is from 1 to 498 (498ns = 498 x 1ns).
- total stop cnt(digit) This is the end position of the target range of the total waveform integration value TOTAL. Set the range to be integrated from the total start cnt mentioned above. The setting range is from 1 to 16383 (16383ns = 16383 x 1ns).

#### Example of TOTAL value calculation:

Setting example: In the case of threshold: 50, total start cnt: 5, total stop cnt: 50, and PSA full scale: 1/1, the red line in the figure below is integrated for 50 points from 5 points before the point where the threshold is exceeded. The integral value is then multiplied by PSA full scale to obtain the TOTAL value of the list data.



Figure 11 Example of TOTAL coverage setting

PSA full scale (multiple)

Select the reduction factor for the RISE, FALL, and TOTAL values of the list data from 1/1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, and 1/512. If the integral value exceeds 65535, set a larger reduction factor.

#### 5. 2. 3. list-pile ups \* Option

When a pile-up is detected in list-pile-up mode, information on the presence or absence of a pile-up is included in the list data, and the waveform data of the pile-up is appended after the list data.

| pileup<br>wave<br>delay<br>(digit) | pilei<br>judi<br>nun<br>(dig | up<br>ge<br>n<br>jit) | pileup<br>timing<br>type | P<br>g | pileup<br>data<br>num<br>(digit | ) |
|------------------------------------|------------------------------|-----------------------|--------------------------|--------|---------------------------------|---|
| 6                                  | \$ 10                        | 4                     | rise                     | $\sim$ | 200                             | ¢ |
| 6                                  | <b>\$</b> 10                 |                       | rise                     | ~      | 200                             | ¢ |

Figure 12 list-pile up related setting (Only the upper 2 channels are displayed.)

| pileup wave delay(digit) | Sets the delay delay at the start of acquisition waveform capture. The unit is       |  |  |  |  |  |  |
|--------------------------|--------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                          | in digits. The default is set to 5 digits. The setting range is from 0 to 31 digits. |  |  |  |  |  |  |
| pileup jugde num(digit)  | Sets the amount of the pileup waveform to be determined. The unit is in digits,      |  |  |  |  |  |  |
|                          | which is correlated with the vertical axis (digits) corresponding to the amplitude   |  |  |  |  |  |  |
|                          | of the waveform. Note that if this value is too small, even noise may be judged      |  |  |  |  |  |  |
|                          | as a pileup.                                                                         |  |  |  |  |  |  |
| pileup timing type       | Selects the reference edge for pileup waveform output.                               |  |  |  |  |  |  |
|                          | rise Rise                                                                            |  |  |  |  |  |  |
|                          | pileup Pile-up                                                                       |  |  |  |  |  |  |
| pileup data num(digit)   | Sets the number of data points for pileup waveform output.                           |  |  |  |  |  |  |

#### 5. 2. 4. pile-up reject \* Option

If the acquired waveform contains pileups, the event data can be removed by setting each CH.

| pileup<br>reject<br>enable | 2      |
|----------------------------|--------|
| ON                         | $\sim$ |
| ON                         | $\sim$ |

Figure 13 pile up reject related setting (Only the upper 2 channels are displayed.)

pile up reject Select the pile-up reject function

ON Enabled. Removes event data calculated on waveforms containing pileups.

OFF Disabled. Outputs even event data calculated with waveforms containing pileups.

#### 5. 2. 5. OR output \* Optiong

LVTTL OR logic signal can be output from the AUX terminal on the front panel with detection timing limited to the energy range between LLD and ULD for each CH

| OR<br>enable |        | OR ler<br>(ns) | ngth |
|--------------|--------|----------------|------|
| OFF          | $\sim$ | 200            | ¢    |
| OFF          | $\sim$ |                |      |

Figure 14 OR output related setting (Only the upper 2 channels are displayed.)

OR eable OR output enable/disable setting from the AUX terminal on the front panel.

OR length Sets the pulse width of the logic signal. The setting range is from 8ns to 1000ns.

# 5. 3. file tab

| nfig file wave                         | spectrum | timespectrum |                                   |                              |             |
|----------------------------------------|----------|--------------|-----------------------------------|------------------------------|-------------|
| file histogram save                    |          |              | list save                         |                              |             |
| histogram continuou                    | is save  |              | list file path<br>C:¥TEMP¥testbin | 1                            | <b>&gt;</b> |
| histogram file path<br>C:¥TEMP¥testcsv |          |              | list file number                  | file name<br>test_000000.bin |             |
| histogram file save ti                 | me(sec)  |              | list file size(Byte)              |                              |             |
|                                        |          |              | OFF V                             |                              |             |

Figure 15 file tab

#### file part

| histogram save              | Saves the histogram data displayed in the spectrum tab at the end of                                     |  |  |  |  |  |  |  |  |
|-----------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|                             | measurement to a file. The file is saved in the format described below.                                  |  |  |  |  |  |  |  |  |
| histogram continuous save   | e Enables/disables continuous saving of histogram data to file at set time intervals                     |  |  |  |  |  |  |  |  |
|                             | Valid only when "hist" is selected in "mode".                                                            |  |  |  |  |  |  |  |  |
| histogram file path         | Set the absolute path of the histogram data file. No extension is also possible.                         |  |  |  |  |  |  |  |  |
|                             | $^{*}\mathbf{NOTE^{*}}$ The file will not be saved with this file name, but will be formatted as follows |  |  |  |  |  |  |  |  |
|                             | based on this file name                                                                                  |  |  |  |  |  |  |  |  |
|                             | Example: If the histogram file path is set to C: $Pata$ histogram.csv and the date and                   |  |  |  |  |  |  |  |  |
|                             | time is 2010/09/01 12:00:00, the data saving will start with the file name C: $\ensuremath{YData}$       |  |  |  |  |  |  |  |  |
|                             | ¥ histogram _201009 01_120000.csv                                                                        |  |  |  |  |  |  |  |  |
| histogram file save time(se | ec) Sets the time interval for continuous storage of histogram data. The unit is                         |  |  |  |  |  |  |  |  |
|                             | seconds. The setting range is from 5 to 3600 seconds                                                     |  |  |  |  |  |  |  |  |
| list save                   | Sets whether or not data in list mode is saved in a file                                                 |  |  |  |  |  |  |  |  |
| list file path              | Set the absolute path of the listing data file. No extension is also possible.                           |  |  |  |  |  |  |  |  |
|                             | $^{*}\mathbf{NOTE}^{*}$ The file will not be saved with this file name, but will be formatted as follows |  |  |  |  |  |  |  |  |
|                             | based on this file name                                                                                  |  |  |  |  |  |  |  |  |
|                             | Example: If the list file path is set to C: $\pm$ Data $\pm$ listbin and the list file number is 0       |  |  |  |  |  |  |  |  |
|                             | as described below, data saving will start with the file name                                            |  |  |  |  |  |  |  |  |
|                             | C:¥Data¥list_000000.bin                                                                                  |  |  |  |  |  |  |  |  |
| list file number            | Sets the starting number of the number appended to the list data file, from 0 to                         |  |  |  |  |  |  |  |  |
|                             | 9999999, reset to 0 if the number exceeds 9999999.                                                       |  |  |  |  |  |  |  |  |
| file name                   | Displays the file name when the file is saved based on the list file path and list file                  |  |  |  |  |  |  |  |  |
|                             | number.                                                                                                  |  |  |  |  |  |  |  |  |
| list file size(Byte)        | Sets the maximum file size for the list data file. If the file size is exceeded while                    |  |  |  |  |  |  |  |  |

saving the list data, the file will be closed, and the data will continue to be saved under a new file name with the list file number moved up by one. The file size (in bytes) located on the right side of the setting displays the size of the file currently being saved.

list header ON/OFF Set header ON/OFF when acquiring list data. Header is IP address; if OFF, data without IP address header will be saved.

### 5. 4. wave tab

The status of signal processing inside this device can be acquired as waveform data with this application. When adjusting signal processing before measurement, the preamp and slow signals from the MONI terminal are checked with an oscilloscope, and this function can do the same.



Figure 16 wave tab

| Graph              | Waveform graph. waveform is displayed during measurement when wave is selected               |  |  |  |  |  |  |  |  |
|--------------------|----------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|                    | in mode                                                                                      |  |  |  |  |  |  |  |  |
| ON/OFF             | Specifies whether waveforms are displayed or not. SIG4 * Option                              |  |  |  |  |  |  |  |  |
| СН                 | Select the CH of the waveform to be displayed                                                |  |  |  |  |  |  |  |  |
| type               | Select the type of waveform to display from the following                                    |  |  |  |  |  |  |  |  |
|                    | raw Digitized with ADC and baseline restored waveforms                                       |  |  |  |  |  |  |  |  |
|                    | CFD CFD shaped waveform                                                                      |  |  |  |  |  |  |  |  |
|                    | Filter Waveform integrated by QDC * Option                                                   |  |  |  |  |  |  |  |  |
|                    | PTG Piled-up timing square wave * Option                                                     |  |  |  |  |  |  |  |  |
| trigger edge       | Select the polarity of the trigger. Normally select pos.                                     |  |  |  |  |  |  |  |  |
| trigger SIG        | Select the SIG (Signal) to be triggered. Normally, select SIG1.                              |  |  |  |  |  |  |  |  |
| hreshold           | Set the trigger threshold. * Cursors in the graph can also be set.                           |  |  |  |  |  |  |  |  |
| trigger point      | Specifies the starting point for waveform display. * It can also be set by the cursor in the |  |  |  |  |  |  |  |  |
|                    | graph.                                                                                       |  |  |  |  |  |  |  |  |
| wave compress      | Selects the degree of time scale compression for the X axis from 1/1, 1/4, 1/8, 1/16, 1/32,  |  |  |  |  |  |  |  |  |
|                    | 1/64, 1/128, and 1/256. 1/2 is not available. Used to display waveforms with long fall       |  |  |  |  |  |  |  |  |
|                    | times.                                                                                       |  |  |  |  |  |  |  |  |
| wave free run      | Unchecking the box displays the triggered waveform, and checking the box displays the        |  |  |  |  |  |  |  |  |
|                    | trigger-free waveform. Can also be used to view baseline levels and noise levels.            |  |  |  |  |  |  |  |  |
| accumulation       | Enables or disables waveform data superimposition.                                           |  |  |  |  |  |  |  |  |
| X,Y Scale          | The X-axis and Y-axis scales can be adjusted with the buttons. + (plus) for enlargement,     |  |  |  |  |  |  |  |  |
|                    | - (minus) for reduction.                                                                     |  |  |  |  |  |  |  |  |
| X axis calibration | Select the unit for the X axis from bin or ns.                                               |  |  |  |  |  |  |  |  |
| Y axis calibration | Select the unit for the Y-axis from bin or mV. * The mV display is for reference only.       |  |  |  |  |  |  |  |  |

- X axis range Right-click on the X-axis and check Auto Scale to make it auto scale. If unchecked, it is no longer auto scale, and the minimum and maximum values of the X-axis are fixed. To change the minimum or maximum value, place the mouse pointer over the value to be changed and click or double-click.
- Y axis range Right-click on the Y-axis and check Auto Scale to make it auto scale. If unchecked, it will no longer be auto scale and the minimum and maximum values on the Y-axis will be fixed. To change the minimum or maximum value, place the mouse pointer over the value to be changed and click or double-click.
  - Cursor movement tool to move the cursor on the graph when setting ROI.
- Zoom. Click to select and execute the following six types of zooming in and out.



Figure 17 Graph Zoom in and out tool

- (1) Quadrangle Zoom Using this option, click on a point on the display that is a corner of the zoom area and drag the tool until a rectangle occupies the zoom area.
- (2) X- zoom Zoom in on an area of the graph along the X-axis.
- (3) Y- zoom Zoom into the area of the graph along the Y-axis.
- (4) Fit zoom Zoom into the area of the graph along the Y-axis.
- (5) Zoom out around the point Click on the center point to zoom out.
- (6) Zoom in around the point Click the center point to zoom in.

Pern tool Allows you to grab the plot and move it around on the graph.

(学)

+

### 5. 5. spectrum tab



Figure 18 spectram tab

| Graph           | Histogram g    | raph, which displays the energy histogram during measurement if             |
|-----------------|----------------|-----------------------------------------------------------------------------|
|                 | histogram is   | selected in mode in the config tab or if list is selected in mode and the   |
|                 | energy spec    | trum ON/OFF checkbox is enabled.                                            |
| Legend checkbox | Selection of   | whether to display a histogram for each CH in the graph.                    |
| ROI CH          | Select the C   | H number to which the ROI (Region Of Interest) is to be applied; up to      |
|                 | 8 ROIs can l   | be set for a single histogram.                                              |
| ROI start       | Start position | n of the ROI. The unit is the unit selected in the calibration described    |
|                 | below.         |                                                                             |
| ROI end         | End position   | of the ROI. The unit is the unit selected in the calibration described      |
|                 | below.         |                                                                             |
| energy          | Definition of  | energy value at peak position (ch), set as 1173 or 1332 (keV) for Co-       |
|                 | 60. When "o    | ch" is selected in the calibration described below, the peak between        |
|                 | ROIs is dete   | cted and keV/ch is calculated from the peak position (ch) and the set       |
|                 | energy value   | e and applied to the result of the calculation of the FWHM.                 |
| calibration     | X-axis units.  | X-axis labels will change according to the setting                          |
|                 | ch             | Display in units of ch (channel); units such as FWHM of FWTM of             |
|                 |                | ROI are optional.                                                           |
|                 | eV             | The slope a and the intercept b of the linear function y=ax+b are           |
|                 |                | calculated and set on the X-axis so that ch is eV by two-point              |
|                 |                | calibration of the two types of peaks (center values) and energy            |
|                 |                | values in a histogram.                                                      |
|                 | keV            | The unit of keV is displayed. Example: If there are 1173.24 keV of          |
|                 |                | Co-60 at 5717.9ch and 1332.5 keV of Co-60 at 6498.7ch, a is                 |
|                 |                | automatically calculated as 0.20397 and b as 6.958297 from the two-         |
|                 |                | point calibration.                                                          |
|                 | manual         | Set the slope a, the intercept b, and the unit label of the linear function |
|                 |                | y=ax+b arbitrarily and set them on the X axis. The units can be set         |

|                   | arbitrarily.                                                                  |
|-------------------|-------------------------------------------------------------------------------|
| Y mapping         | Select the mapping for the Y axis of the graph. The Y-axis labels will change |
|                   | according to the settings.                                                    |
|                   | linear straight line                                                          |
|                   | log logarithm                                                                 |
| smoothing         | Smoothing function to calculate half-widths when statistics are low.          |
| simple count view | The counts displayed on the graph can be read simply.                         |
| gauss fit         | When "on" is selected, Gaussian fitting is applied to the spectrum.           |

# 5. 6. time spectrum tab





\* Settings related to timespectrum display. This setting is limited to the measurement within the board.

\* timespectrum is generated based on the list data acquired in the list mode.

| Graph         | Time difference spectrum. list is selected in mode and timespectrum on/off is checked, the   |
|---------------|----------------------------------------------------------------------------------------------|
|               | time difference spectrum is displayed during measurement.                                    |
| Legend Check  | Select whether to display the spectrum.                                                      |
| Config part   | Time spectrum settings.                                                                      |
| start CH      | Select the CH number from which to obtain the start timing.                                  |
| sotp CH       | elect the CH number from which to obtain the stop timing.                                    |
| gain          | Selectable from 1x to 128x; at 1x, full scale is approx. 780ns (approx. 3.9ps per digit); at |
|               | 128x, full scale is approx. 100μs (0.5ns per digit).                                         |
| coinc offset  | Sets the offset in 1ns increments.                                                           |
| coinc time    | Set the coincidence time in 1ns increments. If the time difference between event detection   |
|               | in the start CH and stop CH mentioned above is within this setting range, it is considered   |
|               | coincidence (simultaneous) and considered valid data.                                        |
| • ROI part    |                                                                                              |
| ROI START     | Start channel of ROI.                                                                        |
| ROI END       | End channel of ROI.                                                                          |
| FWHM          | The calculated half-width is displayed.                                                      |
| FWTM          | The calculated total-width is displayed.                                                     |
| • Xscale part | Select the unit for the X axis from ch or ns.                                                |

# 5. 7. PSD tab





#### Settings for PSD display.

#### \* PSD graphs and cursor area graphs are generated based on the list data obtained in list mode.

PSD graph A two-dimensional histogram using the values in the list data, with the data type selected arbitrarily for the X and Y axes, respectively, and the frequency integrated at the intersection of the X and Y axes. \*NOTE\* The number of channels on the X and Y axes is 16384, which requires about 537 MB (16384 x 16384 x 2 Bytes (counts)) of memory, which is compressed by the compress setting described below. Select items in the list data to be assigned to the X and Y axes of the PSD graph: the X axis PSD axis type is x1/x2 from the combination of x1 and x2; the Y axis is y1/y2 from the combination of y1 and y2. The selections are TOTAL, FALL, RISE, QDC, 1 The settings are summed up against the values on the X and Y axes of the PSD graph. For magnification example, if this setting for the X-axis is 1000, and FALL is selected for x1 and RISE for x2, the X-axis will be FALL/RISE, and if the quotient is 1.234, the value will be multiplied by 1000 to 1234. Select the compression ratio for the PSD graph from the following items. The number of compress divisions and the amount of memory used in that case are described. (Note that an error message may appear, and you may not be able to use the item if you select an item that uses a lot of memory, depending on the condition of your PC. Disabled. 16384 × 16384. approx. 537MB 1 (16384) 1/2 (8192) 1/2 of 16384 channels. 8192 x 8192. approx. 135MB 1/4 (4096) 1/4 of 16384 channels. 4096 × 4096. approx. 34MB 1/8 (2048) 1/8 of 16384 channels. 2048 × 2048. approx. 8.4MB 1/16 (1024) 1/16 of 16384 channels. 1024 × 1024. approx. 2.1MB 1/32 of 16384 channels. 512 × 512. approx. 0.52MB 1/32 (512)

| 1/64 (256)  | 1/64 of 16384 channels. 256 × 256. approx. 0.13MB  |
|-------------|----------------------------------------------------|
| 1/128 (128) | 1/128 of 16384 channels. 128 × 128. approx. 0.03MB |

cursor area graphThis is a 1D histogram of data extracted within the range specified by the cursorin the PSD graph and viewed from the X-axis direction.

cursor To extract data for the cursor area graph, a range is set with this cursor in the PSD graph. The cursor in the PSD graph will reflect any changes made to the settings, and the cursor graph will display a 1D histogram of the data in the area enclosed by the four corners, viewed from the X-axis direction.

# 6. Measurement

As an example, we describe the operation procedures for energy spectrum measurement, list measurement, PSD measurement, and time spectrum measurement when using a LaBr3(Ce) detector (hereafter referred to as "detector")

### 6. 1. Histogram mode

6. 1. 1. Environment



Figure 21 Configuration for measurement

#### 6. 1. 2. Power supply and connection

- (1) Make sure all equipment (VME power rack, HV (high voltage power supply), PC) is OFF.
- (2) Connect the detector to the HV with a cable with SHV connector
- (3) Connect the anode output signal from the detector to CH1 of the APV8108 with a LEMO connector coaxial cable; for BNC connector, use a BNC-LEMO conversion adapter.
- (4) Connect the APV8104 to the PC with a LAN cable.
- (5) Turn on the power to the PC. Launch this application.
- (6) Turn on the power to the VME rack.
- (7) Turn on the high-voltage power supply and apply the appropriate voltage to the detector.
- (8) This example uses a Cs-137 source.
- 6. 1. 3. Application startup and configuratiom
- (1) Double-click the APV8104 shortcut icon on the desktop to launch this application. Immediately after startup, a network connection between this application and the device will be established. If a connection error occurs during this process, please refer to the troubleshooting described below.
- (2) Click on Menu Config to send all settings to this device. After execution, the histogram data in DPP will be initialized.

#### 6. 1. 4. Waveforme confirmation

First, check the signal from the detector input in waveform mode.

(1) In the config tab, make the following settings, then click on the Config menu.

| onfig      | file wave                | spectrum                | time     | spectrum                     | PSD                      |          |                                  |                  |                   |                |               |                               |            |                         |             |                       |          |              |                |                       |               |                       |               |                      |              |                        |                     |                       |          |                      |             |
|------------|--------------------------|-------------------------|----------|------------------------------|--------------------------|----------|----------------------------------|------------------|-------------------|----------------|---------------|-------------------------------|------------|-------------------------|-------------|-----------------------|----------|--------------|----------------|-----------------------|---------------|-----------------------|---------------|----------------------|--------------|------------------------|---------------------|-----------------------|----------|----------------------|-------------|
| H<br>nable | signal type              | signal<br>delay<br>(ns) | polarity | analog<br>gain<br>(multiple) | analog<br>offset<br>(mV) |          | baseline<br>restore<br>filter(µs | e<br>r t<br>s) ( | hresho<br>(digit) | ld timi<br>typ | ng<br>e       | CFD<br>function<br>(multiple) | on<br>ole) | CFD<br>delay<br>(digit) | ,           | CFD<br>walk<br>(digit | (<br>s   | QDC<br>sum/p | eak            | QDC<br>pretri<br>(ns) | gger          | QDC<br>filter<br>(ns) |               | QDC<br>integ<br>rang | ral<br>e(ns) | QDC<br>full s<br>(mult | ;<br>cale<br>tiple) | QDC<br>LLD<br>(digit) | )        | QDC<br>ULD<br>(digit | t)          |
| CH1 :      | nomal sig 🗸              | 0 🗢                     | neg 🗸    | ×1 🗸                         | 0.0                      | <b> </b> | 4µ                               | ~                | 50 4              | CF             | DV            | ×0.21                         | $\sim$     | 10ns                    | $\sim$      | 20                    | -        | sum          | ~              | -8ns                  | ~             | 10ns                  | $\sim$        | 144                  | ¢            | 1/1                    | $\sim$              | 10                    | ¢        | 8190                 | ¢           |
| CH2 :      | nomal sig 🗸              | 0 🖨                     | neg 🗸    | ×1 🗸                         | 0.0                      | <b> </b> | 4μ                               | ~                | 50 1              | CF             | DV            | x0.21                         | ~          | 10ns                    | ~           | 20                    | 4        | sum          | ~              | -8ns                  | ~             | 10ns                  | ~             | 144                  | <b></b>      | 1/1                    | ~                   | 10                    | ¢        | 8190                 | -           |
| СНЗ        | nomal sig 🗸              | 0 🖨                     | neg 🗸    | ×1 🗸                         | 0.0                      | <b> </b> | 4μ                               | ~                | 50                | CF             | D             | x0.21                         | ~          | 10ns                    | $\sim$      | 20                    | 4        | sum          | ~              | -8ns                  | ~             | 10ns                  | $\sim$        | 144                  | 4            | 1/1                    | $\sim$              | 10                    | <b> </b> | 8190                 | -           |
| CH4        | nomal sig 🗸              | 0 🖨                     | neg 🗸    | ×1 🗸                         | 0.0                      | I\$I     | 4µ                               | ~                | 50 1              | CF             | DV            | ×0.21                         | ~          | 10ns                    | $\sim$      | 20                    | <b> </b> | sum          | ~              | -8ns                  | ~             | 10ns                  | $\sim$        | 144                  | ¢            | 1/1                    | ~                   | 10                    | <b> </b> | 8190                 | -           |
|            |                          |                         |          |                              |                          |          |                                  |                  | delay<br>(digit)  | da<br>(d       | ita<br>ligit) | samp                          | ling       | fix d<br>(dig           | lata<br>it) | 3                     |          | sta<br>(di   | rt cnt<br>git) | t sto<br>(di          | p cnt<br>git) | star<br>(dig          | t cnt<br>git) | stop<br>(dig         | it)          | start<br>(digi         | cnt<br>t)           | stop (digit           | cnt<br>) | full sc<br>(multi    | ale<br>ple) |
|            |                          |                         |          |                              |                          |          |                                  |                  | delay<br>(digit)  | da<br>(d       | ita<br>ligit) | samp                          | ling       | fix d<br>(dig           | lata<br>it) |                       |          | sta<br>(di   | rt cnt<br>ait) | t sto<br>(di          | p cnt         | star<br>(dic          | t cnt         | stop<br>(dia         | o cnt        | start<br>(digi         | cnt<br>t)           | stop (<br>(digit      | cnt      | full sc<br>(multi    | ale<br>ple) |
|            |                          |                         |          |                              |                          |          | C                                | H1 :             | 10                | ÷ 2            | 00 🗟          | 1ns                           | ~          | 844                     | 3           |                       | CH1      | : 1          | H              | 10                    | 4             | 8                     | \$            | 5                    | ¢            | 1                      | ¢                   | 20                    | \$       | 1/1                  | ~           |
|            |                          |                         |          |                              |                          |          | C                                | H2 :             | 10                | ÷ 2            | 00 🗟          | 1ns                           | ~          | 844                     | 3           |                       | CH2      | : 1          | H              | 10                    | ¢             | 8                     | ¢             | 5                    | ¢            | 1                      | ¢                   | 20                    | \$       | 1/1                  | $\sim$      |
|            | mode                     |                         |          |                              |                          |          | C                                | H3 :             | 10                | ¢ 2            | 00 🗟          | 1ns                           | ~          | 844                     | 3           |                       | CH3      | : 1          | H              | 10                    | ¢             | 8                     | ¢             | 5                    | ¢            | 1                      | ¢                   | 20                    | ¢        | 1/1                  | $\sim$      |
|            | wave                     | ~                       |          |                              |                          |          | C                                | H4 :             | 10                | ÷ 2            | 00 🗟          | 1ns                           | ~          | 844                     | 3 🗘         |                       | CH4      | : 1          | - H            | 10                    | 4             | 8                     | 4             | 5                    | ¢            | 1                      | ¢                   | 20                    | ¢        | 1/1                  | $\sim$      |
|            | measurment               | ode                     |          |                              |                          |          |                                  |                  |                   |                |               |                               |            |                         |             |                       |          |              |                |                       |               |                       |               |                      |              |                        |                     |                       |          |                      |             |
|            | real time                |                         |          |                              |                          |          |                                  |                  |                   |                |               |                               |            |                         |             |                       |          |              |                |                       |               |                       |               |                      |              |                        |                     |                       |          |                      |             |
|            | measurement<br>time(sec) |                         |          |                              |                          |          |                                  |                  |                   |                |               |                               |            |                         |             |                       |          |              |                |                       |               |                       |               |                      |              |                        |                     |                       |          |                      |             |
|            | 24:00:00                 | <b> </b>                |          |                              |                          |          |                                  |                  |                   |                |               |                               |            |                         |             |                       |          |              |                |                       |               |                       |               |                      |              |                        |                     |                       |          |                      |             |
|            | list read byte(l         | oyte)                   | time     | spectrum                     | ON/OFF                   |          |                                  |                  |                   |                |               |                               |            |                         |             |                       |          |              |                |                       |               |                       |               |                      |              |                        |                     |                       |          |                      |             |
|            | 16000                    |                         |          |                              |                          |          |                                  |                  |                   |                |               |                               |            |                         |             |                       |          |              |                |                       |               |                       |               |                      |              |                        |                     |                       |          |                      |             |

Figure 22 Waveform Measurement Settings

Open the wave tab, confirm the settings shown in the figure below, and then click the menu Clear  $\rightarrow$  Start. You can see the waveform from the detector on the graph.



Figure 23 Waveform Measurement Window

#### Note the following

If wave data is not displayed on the graph, it may not be triggered. First, to check the baseline, check "wave free run" in the wave tab and execute the menu  $Config \rightarrow Clear \rightarrow Start$ . You can check the baseline and the approximate wave height of the signal.



Figure 24 Baseline confirmation in progress

Next, uncheck "wave free run" and gradually increase the threshold from about 10, and note the threshold value at which the waveform is captured well, as shown on the previous page. This note will be used for later settings.

Check if the wave height is too large for saturation. If the wave height is too large, lower the amplitude of the input signal to the instrument by setting the ANALOG GAIN in the CH tab in the CONFIG tab to x1 or by lowering the applied high voltage power supply of the detector.

#### 6. 1. 5. Measurement start

After making the following settings in the config tab, click on the Config menu. Set the threshold value you noted in the waveform measurement to the threshold in the config tab.

| config       | file                                                       | wave                                                          | spectru                 | m time   | spectrum                     | PSD                        |    |                               |                                  |                                                             |               |                                                        |        |                                            |             |                                                 |                                            |                       |                          |                                                         |               |                                                   |          |                                                              |      |                                                |                |                                         |              |                                                    |    |                                                      |             |
|--------------|------------------------------------------------------------|---------------------------------------------------------------|-------------------------|----------|------------------------------|----------------------------|----|-------------------------------|----------------------------------|-------------------------------------------------------------|---------------|--------------------------------------------------------|--------|--------------------------------------------|-------------|-------------------------------------------------|--------------------------------------------|-----------------------|--------------------------|---------------------------------------------------------|---------------|---------------------------------------------------|----------|--------------------------------------------------------------|------|------------------------------------------------|----------------|-----------------------------------------|--------------|----------------------------------------------------|----|------------------------------------------------------|-------------|
| CH<br>enable | signa                                                      | l type                                                        | signal<br>delay<br>(ns) | polarity | analog<br>gain<br>(multiple) | analog<br>offset<br>) (mV) |    | baselin<br>restor<br>filter(µ | ne<br>er<br>us)                  | thresho<br>(digit)                                          | old tir<br>ty | ming<br>ype                                            |        | CFD<br>functio<br>(multip                  | on<br>ole)  | CFD<br>delay<br>(digit)                         | )                                          | CFD<br>walk<br>(digit | t)                       | QDC<br>sum/pe                                           | ak            | QDC<br>pretrigg<br>(ns)                           | er f     | QDC<br>ilter<br>(ns)                                         |      | QDC<br>integr<br>range                         | ral<br>e(ns)   | QDC<br>full so<br>(mult                 | ale<br>iple) | QDC<br>LLD<br>(digit)                              |    | QDC<br>ULD<br>(digit                                 | t)          |
| CH1 :        | nom                                                        | al sig 🗸                                                      | 0 1                     | neg 🗸    | ×1 🗸                         | 0.0                        | \$ | 4µ                            | $\sim$                           | 50                                                          | ¢ c           | CFD                                                    | ~      | x0.21                                      | $\sim$      | 10ns                                            | $\sim$                                     | 20                    | \$                       | sum                                                     | ~             | -8ns 🔍                                            | , 1      | Ons .                                                        | ~    | 144                                            | \$             | 1/1                                     | $\sim$       | 10                                                 | 4  | 8190                                                 | 4           |
| CH2 :        | nom                                                        | al sig 🗸                                                      | 0 4                     | neg 🗸    | ×1 🗸                         | 0.0                        | 4  | 4µ                            | ~                                | 50                                                          | \$ C          | CFD                                                    | ~      | ×0.21                                      | ~           | 10ns                                            | $\sim$                                     | 20                    | \$                       | sum                                                     | ~             | -8ns 🔍                                            | , 1      | Ons                                                          | ~    | 144                                            | \$             | 1/1                                     | $\sim$       | 10                                                 | 4  | 8190                                                 | )\$I        |
| CH3          | nom                                                        | al sig 🗸                                                      | 0 4                     | neg 🗸    | ×1 🗸                         | 0.0                        | -  | 4µ                            | $\sim$                           | 50 H                                                        | ¢ c           | CFD [                                                  | $\sim$ | x0.21                                      | $\sim$      | 10ns                                            | $\sim$                                     | 20                    | 4                        | sum                                                     | $\sim$        | -8ns 🔍                                            | , 1      | Ons .                                                        | ~    | 144                                            | \$             | 1/1                                     | $\sim$       | 10                                                 | 4  | 8190                                                 | )\$         |
| CH4          | nom                                                        | al sig 🗸                                                      | 0 🗟                     | neg 🗸    | ×1 🗸                         | 0.0                        | ¢  | 4µ                            | $\sim$                           | 50                                                          | ¢ C           | CFD [                                                  | ~      | x0.21                                      | $\sim$      | 10ns                                            | $\sim$                                     | 20                    | ¢                        | sum                                                     | ~             | -8ns 🔍                                            | , 1      | Ons .                                                        | ~    | 144                                            |                | 1/1                                     | $\sim$       | 10                                                 | ¢  | 8190                                                 | 1           |
|              | mode<br>hist                                               | 2                                                             | ~                       |          |                              |                            |    |                               | CH1 :<br>CH2 :<br>CH3 :<br>CH3 : | WAVE<br>list-wa<br>delay<br>(digit)<br>10<br>10<br>10<br>10 | ve            | list-wa<br>data<br>(digit)<br>200<br>200<br>200<br>200 | ave    | list-w<br>samp<br>1ns<br>1ns<br>1ns<br>1ns | ave<br>ling | bir<br>fix c<br>(dig<br>, 844<br>, 844<br>, 844 | data<br>(it)<br>43   ↓<br>43   ↓<br>43   ↓ | THE THE THE THE THE   | CH1<br>CH2<br>CH3<br>CH4 | rise<br>star<br>(dig<br>: 1<br>: 1<br>: 1<br>: 1<br>: 1 | t cnt<br>jit) | rise<br>stop c<br>(digit)<br>10<br>10<br>10<br>10 | int<br>I | fall<br>start o<br>(digit<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | int) | fall<br>stop<br>(digi<br>5<br>5<br>5<br>5<br>5 | cnt<br>t)<br>+ | total<br>start<br>(digit<br>1<br>1<br>1 | cnt          | total<br>stop c<br>(digit)<br>20<br>20<br>20<br>20 | nt | PSA<br>full sc<br>(multi<br>1/1<br>1/1<br>1/1<br>1/1 | ale<br>ple) |
|              | meas<br>real t<br>meas<br>time(<br>24:0<br>list re<br>1600 | urment n<br>time<br>urement<br>sec)<br>0:00<br>ad byte(t<br>0 | ode                     | tim      | e spectrum<br>D ON/OFF       | ON/OFF                     |    | L                             |                                  |                                                             |               |                                                        |        |                                            |             |                                                 |                                            |                       |                          |                                                         |               |                                                   |          |                                                              |      |                                                |                |                                         |              |                                                    |    |                                                      |             |



Open the spectrum tab, confirm the settings shown in the figure below, and then click on the menu Clear > Start. After execution, you will see the spectrum as shown below.



Figure 26 Histogram mode measurement in progress

- The measurement status of each CH is displayed in the CH section.
- The acq LED blinks.
- The measurement time displays the set measurement time.
- The elapsed time acquired from the device is displayed in real time.
- The "hist" is displayed in "mode".
- The calculation results for each ROI are displayed in the ROI section.
- Check CH1 in spectrum on/off, and the histogram is displayed in the spectrum tab.

#### 6. 1. 6. End of measurement

To end the measurement, click on the menu Stop.

### 6. 2. List mode

6. 2. 1. Preapration

The same preparations are made from 6.1.1. "Environment" to 6.1.5. "Start of Measurement" in the previous section 6.1. "Histogram Mode.

#### 6. 2. 2. Confirmation of energy spectrum

In histogram mode, note the following

- The output rate (cps) is the number of events per second, and check (1) in the figure below to see if it is too low or too high compared to the assumption. In the list mode, 16Byte of data is obtained for each event, so for example, if output rate (cps) is 500kcps, 8MB/sec (500kcps x 16Byte) of data will be stored per second.
- Check the graph in the spectrum tab to see if there is any abnormality in the shape of the spectrum, especially if excessive noise data is being acquired.



Figure 27 Precautions before measurement in list mode

#### 6. 2. 3. Setting

- (1) In the config tab, set mode to list.
- (2) To save the list data, set each of the following items in the file tab.
  - list save Chechk
  - list file path Reference file path
  - list file number Arbitrary from 0 to 99999999. Be careful not to duplicate.
  - list file size(byte) Size of the list data file. If this size is exceeded, the list file number is automatically moved up by one and saved in a new file.

| sgram file path<br>kidatahintogram<br>Sgram file save fine(sec)<br>Sgram file save fine(sec)<br>Tet file save (Sne)<br>Sgram file save fine(sec)<br>Sgram file save |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AddateMatogram     Int file number     File name       sgram file save time(sec)     Int file save (byte)       Image: Image                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

Figure 28 Settings related to saving list data in the file tab

#### 6. 2. 4. Measurement start

Click the menu Config  $\rightarrow$  Clear  $\rightarrow$  Start. After execution, when an event is detected and list data is acquired, the file size (Byte) in the red frame in the figure below will increase.

|              | it calibrati    | on Tool             | Config Clear Sta | rt Stop |                   |              |                  |                 |                  |                |                |              |              |             |       |       |                     |           |
|--------------|-----------------|---------------------|------------------|---------|-------------------|--------------|------------------|-----------------|------------------|----------------|----------------|--------------|--------------|-------------|-------|-------|---------------------|-----------|
| vice         | Dev1 🗸          | IP address          | 192.168.10.128   | memo    |                   |              |                  |                 |                  |                |                |              | 1            | acq.        | save  | error | mode                | list      |
| 4<br>4<br>2. | output<br>count | output<br>rate(cps) | deadtime<br>(%)  |         | ROI<br>ROI<br>No. | peak<br>(ch) | centroid<br>(ch) | peak<br>(count) | gross<br>(count) | gross<br>(cps) | net<br>(count) | net<br>(cps) | FWHM<br>(ch) | FWHM<br>(%) | FWHM  | FWTM  | measurement<br>mode | real time |
| 1 :          | 761.40k         | 12.82k              | 0.45             |         | ROI1 :            | 0            | 0.00             | 0.000           | 0.000            | NaN            | 0.000          | NaN          | 0.0          | 0.000       | 0.000 | 0.000 | measurement         | 00:01:00  |
| 12 :         | 0.00            | 0.00                | 0.00             |         | ROI2 :            | 0            | 0.00             | 0.000           | 0.000            | NaN            | 0.000          | NaN          | 0.0          | 0.000       | 0.000 | 0.000 | time                |           |
| 3 :          | 0.00            | 0.00                | 0.00             |         | ROI3 :            | 0            | 0.00             | 0.000           | 0.000            | NaN            | 0.000          | NaN          | 0.0          | 0.000       | 0.000 | 0.000 | real time           | 00:01:00  |
| : +          | 0.00            | 0.00                | 0.00             |         | ROI4 :            | 0            | 0.00             | 0.000           | 0.000            | NaN            | 0.000          | NaN          | 0.0          | 0.000       | 0.000 | 0.000 | 6.5                 |           |
|              |                 |                     |                  |         | ROIS :            | 0            | 0.00             | 0.000           | 0.000            | NaN            | 0.000          | NaN          | 0.0          | NaN         | 0.000 | 0.000 | live time           | 00:01:00  |
|              |                 |                     |                  |         | ROI6 :            | 0            | 0.00             | 0.000           | 0.000            | NaN            | 0.000          | NaN          | 0.0          | NaN         | 0.000 | 0.000 | file size(Byte)     | 12.176M   |
|              |                 |                     |                  |         | RO17 :            | 0            | 0.00             | 0.000           | 0.000            | NaN            | 0.000          | NaN          | 0.0          | NaN         | 0.000 | 0.000 | 1928                | 22/221    |
|              |                 |                     |                  |         | ROI8 :            | 0            | 0.00             | 0.000           | 0.000            | NaN            | 0.000          | NaN          | 0.0          | NaN         | 0.000 | 0.000 | sampling            | 1G        |

Figure 29 list data measurement and saving window

#### 6. 2. 5. End of measurement

To end the measurement, click on the menu Stop.

## 6. 3. Time Spectrum Measurement

### 6. 3. 1. Environment



Figure 30 Configuration of time spectrum measurement

6. 3. 2. Power supply and connection

- (1) Make sure all equipment (VME power rack, HV (high voltage power supply), PC) is OFF.
- (2) Connect the detector to the HV with a cable with SHV connector.
- (3) Connect the anode output signal from the detector to CH1 of the APV8108 with a LEMO connector coaxial cable; for BNC connector, use a BNC-LEMO conversion adapter.
- (4) Connect the APV8108 to the PC with a LAN cable.
- (5) Turn on the power to the PC. Launch this application.
- (6) Turn on the power to the VME rack.
- (7) Turn on the high-voltage power supply and apply the appropriate voltage to the detector.
- (8) This example uses a Na-22 source.

6. 3. 3. Preapration

Perform the same preparation as in the previous chapter 6.1.1. in histogram mode, 6.1.4. waveform confirmation.

#### 6. 3. 4. Confirmation of energy spectrum

While checking the status of the detector, specify the range of energy to be measured in time.

First, perform the energy spectrum measurement with the following settings.

| config       | file wave                | spectrum                | times    | pectrum                     | PSD                         |         |                        |                        |                                    |          |                          |          |                |          |                         |             |                       |     |                      |               |                        |            |                       |               |                      |              |                          |                |                           |          |                          |              |
|--------------|--------------------------|-------------------------|----------|-----------------------------|-----------------------------|---------|------------------------|------------------------|------------------------------------|----------|--------------------------|----------|----------------|----------|-------------------------|-------------|-----------------------|-----|----------------------|---------------|------------------------|------------|-----------------------|---------------|----------------------|--------------|--------------------------|----------------|---------------------------|----------|--------------------------|--------------|
| CH<br>enable | signal type              | signal<br>delay<br>(ns) | polarity | analog<br>gain<br>(multiple | analog<br>offset<br>e) (mV) | 9       | base<br>rest<br>filter | eline<br>orer<br>r(µs) | thresh<br>(digit)                  | old      | timing<br>type           |          | CFD<br>functio | n<br>le) | CFD<br>delay<br>(digit) |             | CFD<br>walk<br>(digit | t)  | QDC<br>sum/pe        | aak           | QDC<br>pretrig<br>(ns) | ger        | QDC<br>filter<br>(ns) |               | QDC<br>integrange    | ral<br>e(ns) | QDC<br>full so<br>(mult  | :ale<br>tiple) | QDC<br>LLD<br>(digit)     | )        | QDC<br>ULD<br>(digit     | ;<br>t)      |
| CH1          | : nomal sig 🗸            | 0 🖨                     | neg 🗸    | ×1 ,                        | / 0.0                       | -       | 4µ                     | $\sim$                 | 50                                 | ¢        | CFD                      | $\sim$   | ×0.21          | $\sim$   | 10ns                    | $\sim$      | 20                    | ¢   | sum                  | $\sim$        | -8ns                   | $\sim$     | 10ns                  | $\sim$        | 144                  | ¢            | 1/1                      | $\sim$         | 10                        | -        | 8190                     | l\$          |
| CH2          | : nomal sig 🗸            | 0 🖨                     | neg 🗸    | ×1 ,                        | / 0.0                       | -       | 4µ                     | $\sim$                 | 50                                 | ¢        | CFD                      | ~        | ×0.21          | $\sim$   | 10ns                    | ~           | 20                    | ٢   | sum                  | $\sim$        | -8ns                   | $\sim$     | 10ns                  | $\sim$        | 144                  | ٢            | 1/1                      | $\sim$         | 10                        | -        | 8190                     | l≑I          |
| CH3          | nomal sig 🗸              | 0 🖨                     | neg 🗸    | ×1 ,                        | / 0.0                       | -       | 4μ                     | $\sim$                 | 50                                 | ¢        | CFD                      | $\sim$   | ×0.21          | $\sim$   | 10ns                    | $\sim$      | 20                    | 4   | sum                  | $\sim$        | -8ns                   | $\sim$     | 10ns                  | $\sim$        | 144                  | \$           | 1/1                      | $\sim$         | 10                        | -        | 8190                     | l\$          |
| CH4          | nomal sig 🗸              | 0 🖨                     | neg 🗸    | ×1 ,                        | / 0.0                       | <b></b> | 4μ                     | $\sim$                 | 50                                 | ¢        | CFD                      | $\sim$   | ×0.21          | $\sim$   | 10ns                    | $\sim$      | 20                    | 4   | sum                  | ~             | -8ns                   | ~          | 10ns                  | $\sim$        | 144                  | ٢            | 1/1                      | $\sim$         | 10                        | -        | 8190                     | l\$          |
|              |                          |                         |          |                             |                             |         |                        | LIST                   | -WAVE<br>list-w<br>delay<br>(digit | ave<br>) | list-w<br>data<br>(digit | ave<br>) | list-w<br>samp | ave      | blr<br>fix d<br>(dig    | lata<br>it) |                       | PSA | rise<br>star<br>(dig | t cnt<br>git) | rise<br>stop<br>(dig   | cnt<br>it) | fall<br>start<br>(dig | t cnt<br>iit) | fall<br>stop<br>(dig | it)          | total<br>start<br>(digit | cnt            | total<br>stop c<br>(digit | cnt      | PSA<br>full sc<br>(multi | ale<br>iple) |
|              |                          |                         |          |                             |                             |         |                        | CH1                    | : 10                               |          | 200                      | \$       | 1ns            | -        | / 844                   | 3 🗢         | 8                     | CH1 | : 1                  | ¢             | 10                     | 4          | 8                     | ¢             | 5                    | ¢            | 1                        | ¢              | 20                        | I        | 1/1                      | $\sim$       |
|              |                          |                         |          |                             |                             |         |                        | CH2                    | : 10                               | ¢        | 200                      | ¢        | 1ns            | 1        | / 844                   | 3 🗘         | 8                     | CH2 | : 1                  | 4             | 10                     | ¢          | 8                     | ¢             | 5                    | ¢            | 1                        | ¢              | 20                        | <b> </b> | 1/1                      | $\sim$       |
|              | mode                     |                         |          |                             |                             |         |                        | CH3                    | : 10                               | ¢        | 200                      | ¢        | 1ns            | ~        | / 844                   | 3 🗢         |                       | CH3 | : 1                  | ¢             | 10                     | 4          | 8                     | ¢             | 5                    | ¢            | 1                        | ¢              | 20                        | <b> </b> | 1/1                      | $\sim$       |
|              | hist                     | $\sim$                  |          |                             |                             |         |                        | CH4                    | : 10                               | ¢        | 200                      | \$       | 1ns            | ~        | / 844                   | 3           | 8                     | CH4 | : 1                  | 4             | 10                     | 4          | 8                     | ¢             | 5                    | ¢            | 1                        | ¢              | 20                        | <b> </b> | 1/1                      | $\sim$       |
|              | measurment m             | ode                     |          |                             |                             |         |                        |                        | _                                  |          |                          |          |                |          |                         |             |                       |     |                      |               |                        |            |                       |               |                      |              |                          |                |                           |          |                          |              |
|              | real time                | ~                       |          |                             |                             |         |                        |                        |                                    |          |                          |          |                |          |                         |             |                       |     |                      |               |                        |            |                       |               |                      |              |                          |                |                           |          |                          |              |
|              | measurement<br>time(sec) |                         |          |                             |                             |         |                        |                        |                                    |          |                          |          |                |          |                         |             |                       |     |                      |               |                        |            |                       |               |                      |              |                          |                |                           |          |                          |              |
|              | 24:00:00                 | <b>+</b>                |          |                             |                             |         |                        |                        |                                    |          |                          |          |                |          |                         |             |                       |     |                      |               |                        |            |                       |               |                      |              |                          |                |                           |          |                          |              |
|              | list read byte(b         | yte)                    | time     | spectrur                    | N/OF                        | F       |                        |                        |                                    |          |                          |          |                |          |                         |             |                       |     |                      |               |                        |            |                       |               |                      |              |                          |                |                           |          |                          |              |
|              | 16000                    | +                       | PSD      | ON/OF                       |                             |         |                        |                        |                                    |          |                          |          |                |          |                         |             |                       |     |                      |               |                        |            |                       |               |                      |              |                          |                |                           |          |                          |              |
|              |                          |                         |          |                             |                             |         |                        |                        |                                    |          |                          |          |                |          |                         |             |                       |     |                      |               |                        |            |                       |               |                      |              |                          |                |                           |          |                          |              |

Figure 31 Energy spectrum measurement setting before time spectrum measurement (full energy range)

Open the spectrum tab and click on the menu Clear > Start. After execution, the following spectrum will be displayed. While checking the shape and counts of the spectrum, use ROI start and ROI end to set the approximate peak range.



Figure 32 Energy spectrum measurement before time spectrum measurement (full energy range)

Next, to narrow down the target energy for time measurement (in this case, the 511 keV peak of Na-22), make the following settings. Set ROI start for QDC LLDs and ROI end for QDC ULDs in the config tab in the red frame in the figure below, using the values you estimated in the ROI start and ROI end on the previous page.

| nfig | file            | wav           | e      | spectrum                | n time   | spectru                | Jm           | PSD                      |   |                         |                      |                           |          |                          |        |                           |               |                         |             |            |                      |                    |               |                        |               |                       |               |                      |               |                          |                |                           |          |                           |            |
|------|-----------------|---------------|--------|-------------------------|----------|------------------------|--------------|--------------------------|---|-------------------------|----------------------|---------------------------|----------|--------------------------|--------|---------------------------|---------------|-------------------------|-------------|------------|----------------------|--------------------|---------------|------------------------|---------------|-----------------------|---------------|----------------------|---------------|--------------------------|----------------|---------------------------|----------|---------------------------|------------|
| able | signal          | type          |        | signal<br>delay<br>(ns) | polarity | analo<br>gain<br>(mult | bg<br>tiple) | analog<br>offset<br>(mV) |   | base<br>resto<br>filter | line<br>orer<br>(µs) | thresh<br>(digit)         | old      | timing<br>type           |        | CFD<br>functio<br>(multip | on<br>ole)    | CFD<br>delay<br>(digit) | )           | CFI<br>wal | D Q<br>lk su<br>git) | DC<br>m/p          | ak            | QDC<br>pretrig<br>(ns) | ger           | QDC<br>filter<br>(ns) |               | QDC<br>integ<br>rang | ral<br>e(ns)  | QDC<br>full si<br>(mult  | cale<br>tiple) | QDC<br>LLD<br>(digit)     | )        | QDC<br>ULD<br>(digit      | :)         |
| H1 : | noma            | l sig         | ~      | 0                       | neg 🗸    | ×1                     | $\sim$       | 0.0                      | ¢ | 4µ                      | $\sim$               | 50                        | ¢        | CFD                      | $\sim$ | x0.21                     | $\overline{}$ | 10ns                    | $\sim$      | 20         | \$                   | um                 | $\sim$        | -8ns                   | $\sim$        | 10ns                  | $\sim$        | 144                  | \$            | 1/1                      | $\sim$         | 1700                      |          | 1950                      | 4          |
| H2 : | noma            | l sig         | ~      | 0 🗢                     | neg 🗸    | ×1                     | ~            | 0.0                      | ¢ | 4μ                      | $\sim$               | 50                        | ÷.       | CFD                      | $\sim$ | x0.21                     | $\sim$        | 10ns                    | $\sim$      | 20         | \$                   | um                 | ~             | -8ns                   | $\sim$        | 10ns                  | ~             | 144                  | \$            | 1/1                      | ~              | 1750                      |          | 2000                      | K          |
| 13   | noma            | l sig         | $\sim$ | 0                       | neg 🗸    | ×1                     | ~            | 0.0                      | ¢ | 4µ                      | $\sim$               | 50                        | ¢        | CFD                      | $\sim$ | x0.21                     | $\sim$        | 10ns                    | $\sim$      | 20         | <b>\$</b>            | um                 | ~             | -8ns                   | $\sim$        | 10ns                  | $\sim$        | 144                  | ¢             | 1/1                      | $\sim$         | 10                        | ÷        | 8190                      | k          |
| 4    | noma            | l sig         | ~      | 0                       | neg 🗸    | x1                     | ~            | 0.0                      | ¢ | 4µ                      | ~                    | 50                        | ¢        | CFD                      | ~      | x0.21                     | $\sim$        | 10ns                    | $\sim$      | 20         | \$ s                 | um                 | ~             | -8ns                   | $\sim$        | 10ns                  | ~             | 144                  | \$            | 1/1                      | $\sim$         | 10                        | 4        | 8190                      | K          |
|      |                 |               |        |                         |          |                        |              |                          |   |                         |                      | list-w<br>delay<br>(digit | ave<br>( | list-w<br>data<br>(digit | ave    | list-w<br>samp            | ling          | blr<br>fix d<br>(dig    | lata<br>it) |            |                      | rise<br>sta<br>(di | t cnt         | rise<br>stop           | o cnt         | fall<br>star<br>(dic  | t cnt         | fall<br>stop<br>(dig | o cnt         | total<br>start<br>(digit | cnt            | total<br>stop (<br>(digit | cnt      | PSA<br>full sci<br>(multi | al         |
|      |                 |               |        |                         |          |                        |              |                          |   |                         |                      | delay<br>(digit           | ()       | data<br>(digit           | )      | samp                      | ling          | fix d<br>(dig           | iata<br>it) |            |                      | sta<br>(di         | t cnt<br>git) | stop<br>(dig           | p cnt<br>git) | star<br>(dig          | t cnt<br>jit) | stop<br>(dig         | p cnt<br>pit) | start<br>(digit          | cnt<br>t)      | stop (<br>digit           | ont)     | full sci<br>(multi        | ale<br>ple |
|      |                 |               |        |                         |          |                        |              |                          |   |                         | CH1                  | : 10                      | \$       | 200                      | ¢      | Ins                       | ~             | 844                     | 3 🗢         | 1          | CH1 :                | 1                  | ¢             | 10                     | ¢             | 8                     | ¢             | 5                    | ¢             | 1                        | )\$            | 20                        | )¢I      | 1/1                       | 1          |
|      |                 |               |        |                         |          |                        |              |                          |   |                         | CH2                  | : 10                      | 4        | 200                      | ¢      | 1ns                       | ~             | 844                     | 3 🗢         | 1          | CH2 :                | 1                  | 4             | 10                     | ¢             | 8                     | •             | 5                    | ¢             | 1                        | <b>\$</b>      | 20                        | \$       | 1/1                       | 1          |
|      | mode            |               |        |                         |          |                        |              |                          |   |                         | CH3                  | : 10                      | 4        | 200                      |        | 1ns                       | ~             | 844                     | 3 🗢         | 1          | CH3 :                | 1                  | 4             | 10                     | ¢             | 8                     | ¢             | 5                    | ¢             | 1                        | ¢              | 20                        | <b>+</b> | 1/1                       | ~          |
|      | hist            |               |        | $\sim$                  |          |                        |              |                          |   |                         | CH4                  | : 10                      | \$       | 200                      |        | 1ns                       | ~             | 844                     | 3 🗢         | 1          | CH4 :                | 1                  | 4             | 10                     | ¢             | 8                     | ¢             | 5                    | ÷             | 1                        | ÷              | 20                        | ¢        | 1/1                       | ~          |
|      | measu           | Irment        | mo     | de                      |          |                        |              |                          |   |                         |                      |                           |          |                          |        |                           |               |                         |             |            |                      |                    |               |                        |               |                       |               |                      |               |                          |                |                           |          |                           | _          |
|      | real ti         | me            |        | $\sim$                  |          |                        |              |                          |   |                         |                      |                           |          |                          |        |                           |               |                         |             |            |                      |                    |               |                        |               |                       |               |                      |               |                          |                |                           |          |                           |            |
|      | measu<br>time(s | iremer<br>ec) | nt     |                         |          |                        |              |                          |   |                         |                      |                           |          |                          |        |                           |               |                         |             |            |                      |                    |               |                        |               |                       |               |                      |               |                          |                |                           |          |                           |            |
|      | 24:00           | :00           |        | )\$                     |          |                        |              |                          |   |                         |                      |                           |          |                          |        |                           |               |                         |             |            |                      |                    |               |                        |               |                       |               |                      |               |                          |                |                           |          |                           |            |
|      | list rea        | d byte        | e(by   | te)                     | tim      | e spect                | rum (        | ON/OFF                   |   |                         |                      |                           |          |                          |        |                           |               |                         |             |            |                      |                    |               |                        |               |                       |               |                      |               |                          |                |                           |          |                           |            |
|      |                 |               |        | 100000                  |          |                        |              |                          |   |                         |                      |                           |          |                          |        |                           |               |                         |             |            |                      |                    |               |                        |               |                       |               |                      |               |                          |                |                           |          |                           |            |

Figure 33 Energy spectrum measurement before time spectrum measurement (energy range narrowing setting)

Open the spectrum tab and click on the menu Clear > Start. After execution, you will see the energy peaks narrowed down in the QDC LLD and QDC ULD ranges, as shown below.



Figure 34 Energy spectrum measurement before time spectrum measurement (energy range refinement)

#### 6. 3. 5. Setting

(1) On cconfig tab

mode list

timespectrum ON/OFF チェック

(2) Click on the menu Config Please note that measurement at high counts in this mode may cause unstable behavior due to the computational load on the PC.

| config       | file                                                     | wave                                                         | spe                  | ctrum | time                | spectru                | m          | PSD                      |   |                         |                      |                                          |          |                                 |           |                           |             |                             |                       |                      |          |                          |                      |                         |               |                           |               |                             |            |                               |                |                                 |              |                                   |             |
|--------------|----------------------------------------------------------|--------------------------------------------------------------|----------------------|-------|---------------------|------------------------|------------|--------------------------|---|-------------------------|----------------------|------------------------------------------|----------|---------------------------------|-----------|---------------------------|-------------|-----------------------------|-----------------------|----------------------|----------|--------------------------|----------------------|-------------------------|---------------|---------------------------|---------------|-----------------------------|------------|-------------------------------|----------------|---------------------------------|--------------|-----------------------------------|-------------|
| CH<br>enable | signa                                                    | type                                                         | sign<br>dela<br>(ns) | al    | polarity            | analo<br>gain<br>(mult | g<br>iple) | analog<br>offset<br>(mV) |   | base<br>resto<br>filter | line<br>orer<br>(µs) | thresh<br>(digit)                        | hold     | timing<br>type                  |           | CFD<br>functio<br>(multip | on<br>ole)  | CFD<br>delay<br>(digit)     | )                     | CFD<br>walk<br>(digi | (<br>; s | QDC<br>sum/p             | eak                  | QDC<br>pretri<br>(ns)   | gger          | QDC<br>filter<br>(ns)     |               | QDC<br>integra              | al<br>(ns) | QDC<br>full so<br>(mult       | cale<br>tiple) | QDC<br>LLD<br>(digit)           | )            | QDC<br>ULD<br>(digit              | )           |
| CH1          | nom                                                      | al sig 🗸                                                     | 0                    | -     | neg 🗸               | x1                     | $\sim$     | 0.0                      | ¢ | 4µ                      | $\sim$               | 50                                       | <b> </b> | CFD                             | $\sim$    | ×0.21                     | ~           | 10ns                        | $\sim$                | 20                   | ¢        | sum                      | $\sim$               | -8ns                    | $\sim$        | 10ns                      | $\sim$        | 144                         | <b>\$</b>  | 1/1                           | $\sim$         | 1700                            | <b>+</b>     | 1950                              | l\$         |
| CH2 :        | nom                                                      | al sig 🗸                                                     | 0                    | 4     | neg 🗸               | ×1                     | ~          | 0.0                      | ¢ | 4μ                      | ~                    | 50                                       | 4        | CFD                             | $\sim$    | x0.21                     | ~           | 10ns                        | $\sim$                | 20                   | ¢        | sum                      | ~                    | -8ns                    | ~             | 10ns                      | $\sim$        | 144                         | \$         | 1/1                           | ~              | 1750                            |              | 2000                              | <b> </b>    |
| CH3          | nom                                                      | al sig 🗸                                                     | 0                    | ÷     | neg 🗸               | ×1                     | $\sim$     | 0.0                      | ¢ | 4µ                      | $\sim$               | 50                                       | ÷        | CFD                             | $\sim$    | x0.21                     | $\sim$      | 10ns                        | $\sim$                | 20                   | ¢        | sum                      | $\sim$               | -8ns                    | $\sim$        | 10ns                      | $\sim$        | 144                         | ¢          | 1/1                           | $\sim$         | 10                              | <b> </b>     | 8190                              | <b>\$</b> - |
| CH4          | nom                                                      | al sig 🗸                                                     | 0                    | \$    | neg 🗸               | x1                     | $\sim$     | 0.0                      | ¢ | 4μ                      | $\sim$               | 50                                       | <b> </b> | CFD                             | $\sim$    | x0.21                     | $\sim$      | 10ns                        | $\sim$                | 20                   | ¢        | sum                      | $\sim$               | -8ns                    | $\sim$        | 10ns                      | $\sim$        | 144                         | ¢          | 1/1                           | $\sim$         | 10                              | <b>\$</b>    | 8190                              | <b>≑</b>    |
|              |                                                          |                                                              |                      |       |                     |                        |            |                          |   |                         | CH1                  | -WAV<br>list-w<br>delay<br>(digi<br>: 10 | t)       | list-w<br>data<br>(digit<br>200 | ave<br>t) | list-w<br>samp<br>1ns     | ave<br>ling | blr<br>fix c<br>(dig<br>844 | data<br>jit)<br>43  € |                      | CH1      | ris<br>sta<br>(di<br>: 1 | e<br>irt cn<br>igit) | ris<br>sto<br>(di<br>10 | p cnt<br>git) | fall<br>star<br>(dig<br>8 | t cnt<br>iit) | fall<br>stop<br>(digit<br>5 | cnt        | total<br>start<br>(digit<br>1 | cnt<br>;)      | total<br>stop o<br>(digit<br>20 | nt<br>)<br>∳ | PSA<br>full sca<br>(multip<br>1/1 | ale<br>ole) |
|              | mode                                                     |                                                              |                      | -     |                     |                        |            |                          |   |                         | CH3                  | : 10                                     | 10       | 200                             |           | 1ns                       |             | 844                         | 13 0                  |                      | CH3      | 1                        | k                    | 10                      | 10            | 8                         | 101           | 5                           |            | 1                             |                | 20                              |              | 1/1                               | ~           |
|              | list                                                     |                                                              |                      | n'    |                     |                        |            |                          |   |                         | CH4                  | : 10                                     | 1¢       | 200                             | -         | 1ns                       |             | / 844                       | 13                    | 11                   | CH4      | : 1                      | K                    | 10                      | 4             | 8                         | 101           | 5                           | -          | 1                             | 1¢1            | 20                              |              | 1/1                               | ~           |
|              | meas<br>real<br>meas<br>time(<br>24:0<br>list re<br>1600 | urment n<br>ime<br>urement<br>sec)<br>0:00<br>ad byte(l<br>0 | oyte)                |       | <mark>⊡ time</mark> | e spectr               | um C       | DN/OFF                   | ] |                         |                      | . 10                                     |          |                                 |           |                           |             |                             |                       |                      |          | -                        | 1.5                  |                         | 12            |                           |               |                             |            | -                             |                |                                 |              |                                   |             |





Figure 36 Time spectrum measurement settings in timespectrum tab

Open the timespectrum tab and click on the menu Clear > Start. After execution, the following spectrum will be displayed. The time resolution FWHM (ps) is calculated by setting the ROI in the lower right side of the screen.



Figure 37 Time Spectrum Measurement (Horizontal axis zoomed in)

6. 3. 6. End of measurement

To end the measurement, click on the menu Stop.

## 6. 4. PSD mode \* Option

#### 6. 4. 1. Preaparation

The same preparation is performed from 6.1.1 Environment to 6.1.4 Waveform Check in the previous chapter 6.1. Histogram Mode.

#### 6. 4. 2. Checking input waveforms

Remember the number of points on the rising edge from the THRESHOLD setting and the number of points to the falling edge.

#### 6. 4. 3. Checking energy spectrum

The same checks are performed as in the histogram mode in the previous section 6.1.

#### 6. 4. 4. Setting

(1) Configure the following settings in the config tab

mode list PSD ON/OFF check

| config       | file wa               | ive    | spe                    | ctrum    |           | imes   | pectru                 | m            | PSD                      |     |                         |                      |                        |            |                         |            |                           |             |                         |             |                     |       |                    |                     |                        |               |                       |                 |                        |              |                          |                |                           |            |                         |                |
|--------------|-----------------------|--------|------------------------|----------|-----------|--------|------------------------|--------------|--------------------------|-----|-------------------------|----------------------|------------------------|------------|-------------------------|------------|---------------------------|-------------|-------------------------|-------------|---------------------|-------|--------------------|---------------------|------------------------|---------------|-----------------------|-----------------|------------------------|--------------|--------------------------|----------------|---------------------------|------------|-------------------------|----------------|
| CH<br>enable | signal typ            | e      | signa<br>delar<br>(ns) | al<br>Y  | pola      | rity   | analo<br>gain<br>(mult | vg<br>tiple) | analog<br>offset<br>(mV) |     | base<br>resto<br>filter | line<br>orer<br>(µs) | thres<br>(digit        | hold<br>:) | timing<br>type          | ,          | CFD<br>functio<br>(multip | on<br>ole)  | CFD<br>delay<br>(digit) | )           | CFD<br>walk<br>(dig | c it) | QDC<br>sum/p       | eak                 | QDC<br>pretrig<br>(ns) | gger          | QDC<br>filter<br>(ns) |                 | QDC<br>integr<br>range | ral<br>e(ns) | QDC<br>full se<br>(mult  | cale<br>tiple) | QDC<br>LLD<br>(digit)     | )          | QDO<br>ULD<br>(digi     | ;<br>it)       |
| CH1 :        | nomal sig             | $\sim$ | 0                      | ¢        | neg       | $\sim$ | ×1                     | $\sim$       | 0.0                      | ¢   | 4μ                      | $\sim$               | 50                     | ¢          | CFD                     | $\sim$     | x0.21                     | $\sim$      | 10ns                    | $\sim$      | 20                  | ¢     | sum                | $\sim$              | -8ns                   | $\sim$        | 10ns                  | $\mathbf{\vee}$ | 144                    | \$           | 1/1                      | $\sim$         | 10                        | -          | 8190                    |                |
| CH2 :        | nomal sig             | $\sim$ | 0                      | ¢        | neg       | $\sim$ | ×1                     | $\sim$       | 0.0                      | ¢   | 4µ                      | $\sim$               | 50                     | ¢          | CFD                     | $\sim$     | x0.21                     | $\sim$      | 10ns                    | $\sim$      | 20                  | ¢     | sum                | $\sim$              | -8ns                   | $\sim$        | 10ns                  | $\sim$          | 144                    | \$           | 1/1                      | $\sim$         | 10                        | <b>\</b>   | 8190                    |                |
| CH3          | nomal sig             | $\sim$ | 0                      | ¢        | neg       | $\sim$ | ×1                     | $\sim$       | 0.0                      | ¢   | 4μ                      | $\sim$               | 50                     | ¢          | CFD                     | $\sim$     | x0.21                     | $\sim$      | 10ns                    | ~           | 20                  | ¢     | sum                | ~                   | -8ns                   | $\sim$        | 10ns                  | $\sim$          | 144                    | ¢            | 1/1                      | $\sim$         | 10                        | <b> </b> ₽ | 8190                    |                |
| CH4          | nomal sig             | ~      | 0                      | <b>\</b> | neg       | $\sim$ | ×1                     | ~            | 0.0                      | )\$ | 4μ                      | $\sim$               | 50                     | <b> </b>   | CFD                     | ~          | x0.21                     | ~           | 10ns                    | ~           | 20                  | ¢     | sum                | $\sim$              | -8ns                   | $\sim$        | 10ns                  | $\sim$          | 144                    | -            | 1/1                      | $\sim$         | 10                        | <b> </b>   | 8190                    |                |
|              |                       |        |                        |          |           |        |                        |              |                          |     |                         | LIST                 | list-v<br>dela<br>(dig | VE         | list-v<br>data<br>(digi | vave<br>t) | list-w<br>samp            | ave<br>ling | blr<br>fix d<br>(dig    | lata<br>it) |                     | -PSA  | rise<br>sta<br>(di | e<br>rt cnt<br>git) | rise<br>sto<br>(die    | p cnt<br>git) | fall<br>start<br>(dig | t cnt<br>iit)   | fall<br>stop<br>(digi  | cnt<br>it)   | total<br>start<br>(digit | cnt<br>t)      | total<br>stop (<br>(digit | cnt        | PSA<br>full sc<br>(mult | tale<br>tiple) |
|              |                       |        |                        |          |           |        |                        |              |                          |     |                         | CH1                  | : 10                   | 4          | 200                     | -          | 1ns                       | 1           | / 844                   | 3           |                     | CH1   | : 1                | 4                   | 10                     | 4             | 8                     | -               | 5                      | -            | 1                        | 4              | 20                        | -          | 1/1                     | ~              |
|              |                       |        |                        |          |           |        |                        |              |                          |     |                         | CH2                  | : 10                   | 4          | 200                     | \$         | 1ns                       | 1           | / 844                   | 3 🗘         | 1                   | CH2   | : 1                | ¢                   | 10                     | ¢             | 8                     | ¢               | 5                      | <b> </b>     | 1                        | 4              | 20                        | ÷          | 1/1                     | $\sim$         |
|              | mode                  |        |                        | ٦        |           |        |                        |              |                          |     |                         | CH3                  | : 10                   | ¢          | 200                     | 4          | 1ns                       | 1           | / 844                   | 3 🗘         | 1                   | CH3   | : 1                | - I¢                | 10                     | ¢             | 8                     | ¢               | 5                      | <b> </b>     | 1                        | 4              | 20                        | )          | 1/1                     | $\sim$         |
|              | list                  |        | $\sim$                 | ]        |           |        |                        |              |                          |     |                         | CH4                  | : 10                   | ¢          | 200                     | ¢          | 1ns                       | 1           | / 844                   | 3           |                     | CH4   | : 1                | 4                   | 10                     | ¢             | 8                     | ¢               | 5                      | ¢            | 1                        | )              | 20                        | ÷          | 1/1                     | $\sim$         |
|              | measurme              | ent mo | de                     | 5        |           |        |                        |              |                          |     |                         |                      |                        |            |                         |            |                           |             |                         |             |                     |       |                    |                     |                        |               |                       |                 |                        |              |                          |                |                           |            |                         |                |
|              | real time             |        | $\sim$                 |          |           |        |                        |              |                          |     |                         |                      |                        |            |                         |            |                           |             |                         |             |                     |       |                    |                     |                        |               |                       |                 |                        |              |                          |                |                           |            |                         |                |
|              | measurem<br>time(sec) | ent    |                        |          |           |        |                        |              |                          |     |                         |                      |                        |            |                         |            |                           |             |                         |             |                     |       |                    |                     |                        |               |                       |                 |                        |              |                          |                |                           |            |                         |                |
|              | 24:00:00              |        | \$                     |          |           |        |                        |              |                          |     |                         |                      |                        |            |                         |            |                           |             |                         |             |                     |       |                    |                     |                        |               |                       |                 |                        |              |                          |                |                           |            |                         |                |
|              | list read b           | yte(b) | rte)                   |          |           | time   | spect                  | rum (        | DN/OFF                   |     |                         |                      |                        |            |                         |            |                           |             |                         |             |                     |       |                    |                     |                        |               |                       |                 |                        |              |                          |                |                           |            |                         |                |
|              | 16000                 |        | \$                     |          | $\square$ | PSD    | ON/C                   | DFF          |                          |     |                         |                      |                        |            |                         |            |                           |             |                         |             |                     |       |                    |                     |                        |               |                       |                 |                        |              |                          |                |                           |            |                         |                |
|              |                       |        |                        |          | _         |        |                        |              | -                        |     |                         |                      |                        |            |                         |            |                           |             |                         |             |                     |       |                    |                     |                        |               |                       |                 |                        |              |                          |                |                           |            |                         |                |

Figure 38 config tab

(2) PSD measurement is possible without saving the list data. By saving the list data, it is also possible to generate a PSD graph by loading this file.

- (3) In the PSD tab, make the following settings.
  - PSD axis type Select the data to be assigned to the X and Y axes. If the decimal point is also expressed in the division result, set the multiplier to the quotient. (This cannot be changed during measurement.

Sets the area of interest in the PSD graph. Can be changed during measurement. cursor config file wave 1300 1200 1100 1000 900 800 ounts TOTAL 700 -500 400 **\$** 300 100 8 18 \*\* 200 & 1Y 7.13 B 1X 1.4 100 B 12 2.22 8 1Y 1.13 800 FALL/RISE 98 104 400 1400 1556 compress 1/8(2048) V 100 L/RISE 102 + 0 0

Figure 39 PSD tab

#### 6. 4. 5. Measurement start

Click the menu Config  $\rightarrow$  Clear  $\rightarrow$  Start. After execution, the PSD graph and the cursor area of PSD graph are updated. file save is checked, the following file size (byte) is increased when the event is detected, and the list data is acquired. The measured data can be saved in the menu File - save PSD.



Figure 40 PSD graph and cursor area graph updated during list data measurement

#### 6. 4. 6. End of measurement

To end the measurement, click on the menu Stop.

# 7. Quit

Click on the menu File - quit. After a confirmation dialog appears, click the quit button to exit this application and the screen will disappear. (The next time the application is launched, the settings at the time of quitting will be applied.

# 8. File

| 8. 1 | Histogram data file | e |
|------|---------------------|---|
| 0. 1 | i nologi am uala me | - |

| (1)            | File format                          |                                            |  |
|----------------|--------------------------------------|--------------------------------------------|--|
|                | CSV text format, separated by commas |                                            |  |
| (2)            | File name                            |                                            |  |
| $(\mathbf{a})$ | Set arbitrarily                      |                                            |  |
| (3)            | Header part                          |                                            |  |
|                | Measurement mode                     | Operation Mode                             |  |
|                | Measurement time                     | Measurement setting time. Unit is seconds. |  |
|                | Real time                            | Real time                                  |  |
|                | Start Time                           | Measurement start time                     |  |
|                | End Time                             | Measurement stop time                      |  |
|                | *Saved for each CH be                | low                                        |  |
|                | POL                                  | polarity                                   |  |
|                | TGE                                  | Waveform display trigger CH                |  |
|                | TGC                                  | Waveform acquisition polarity              |  |
|                | RJT                                  | Waveform acquisition threshold             |  |
|                | CCF                                  | CFD function                               |  |
|                | CDL                                  | CFD delay                                  |  |
|                | CWK                                  | CFD walk                                   |  |
|                | CTH                                  | CFD threshold                              |  |
|                | FLK                                  | Baseline time constant                     |  |
|                | PTS                                  | QDC pretigger                              |  |
|                | LIG                                  | QDC filter time constant                   |  |
|                | LIT                                  | QDC sum or peak                            |  |
|                | AFS                                  | QDC integral reduction                     |  |
|                | CLD                                  | QDC LLD                                    |  |
|                | CUD                                  | QDC ULD                                    |  |
|                | TTY                                  | Timing type                                |  |
|                | *Save to single below                |                                            |  |
|                | MOD                                  | Мое                                        |  |
|                | MTM                                  | Measurement time                           |  |
|                | MEMO                                 | memo                                       |  |
|                |                                      |                                            |  |

Calculation part

| *Saved for each ROI be | low                                                  |
|------------------------|------------------------------------------------------|
| ROI_ch                 | Input channel number that was the subject of the ROI |
| ROI_start              | ROI start position (ch)                              |
| ROI_end                | ROI end position (ch)                                |
|                        |                                                      |

| Energy(keV)             | Energy of ROI setting (keV)                       |  |
|-------------------------|---------------------------------------------------|--|
| peak(ch)                | Peak position between ROIs (ch)                   |  |
| centroid(ch)            | Center position between ROIs (ch)                 |  |
| peak(count)             | Peak ch count between ROIs                        |  |
| gross(count)            | Sum of counts between ROIs                        |  |
| gross(cps)              | cps of counts between ROIs                        |  |
| net(count)              | Sum of counts minus background between ROIs       |  |
| net(cps)                | cps of total counts minus background between ROIs |  |
| FWHM(ch)                | Half-width between ROIs (ch)                      |  |
| FWHM(%)                 | Resolution between ROIs (%)                       |  |
| FWHM                    | Half-width between ROIs                           |  |
| FWTM                    | Full width between ROIs                           |  |
| Status part             |                                                   |  |
| *Saved for each CH belo | W                                                 |  |
| outtput count           | Output count                                      |  |
| outtput rate            | Output count rate                                 |  |
| dead time               | Dead-time ratio                                   |  |

Data part

Histogram data per channel. Maximum 8192 points.

# 8. 2. Waveforme data file

| (1)          | File format                               |                                            |  |  |  |
|--------------|-------------------------------------------|--------------------------------------------|--|--|--|
| ( <b>0</b> ) | CSV text format, separa                   | ated by commas                             |  |  |  |
| (2)          | Set arbitrarily                           |                                            |  |  |  |
| (3)          | Component <ul> <li>Header part</li> </ul> |                                            |  |  |  |
|              | Measurement mode                          | Operation Mode                             |  |  |  |
|              | Measurement time                          | Measurement setting time. Unit is seconds. |  |  |  |
|              | Real time                                 | Real time                                  |  |  |  |
|              | Start Time                                | Measurement start time                     |  |  |  |
|              | End Time                                  | Measurement stop time                      |  |  |  |
|              | *Saved for each CH below                  |                                            |  |  |  |
|              | POL                                       | polarity                                   |  |  |  |
|              | TGE                                       | Waveform display trigger CH                |  |  |  |
|              | TGC                                       | Waveform acquisition polarity              |  |  |  |
|              | RJT                                       | Waveform acquisition threshold             |  |  |  |
|              | CCF                                       | CFD function                               |  |  |  |
|              | CDL                                       | CFD delay                                  |  |  |  |
|              | CWK                                       | CFD walk                                   |  |  |  |
|              | CTH                                       | CFD threshold                              |  |  |  |
|              | FLK                                       | Baseline time constant                     |  |  |  |
|              | PTS                                       | QDC pretigger                              |  |  |  |
|              | LIG                                       | QDC filter time constant                   |  |  |  |
|              | LIT                                       | QDC sum or peak                            |  |  |  |
|              | AFS                                       | QDC integral reduction                     |  |  |  |
|              | CLD                                       | QDC LLD                                    |  |  |  |
|              | CUD                                       | QDC ULD                                    |  |  |  |
|              | TTY                                       | Timing type                                |  |  |  |
|              | *Save to single below                     |                                            |  |  |  |
|              | MOD                                       | Мое                                        |  |  |  |
|              | MTM                                       | Measurement time                           |  |  |  |
|              | MEMO                                      | memo                                       |  |  |  |
|              | Status part                               |                                            |  |  |  |
|              | *Saved for each CH below                  |                                            |  |  |  |
|              | outtput count                             | Output count                               |  |  |  |
|              | outtput rate                              | Output count rate                          |  |  |  |
|              | dead time                                 | Dead-time ratio                            |  |  |  |
|              | • Data part                               |                                            |  |  |  |
|              | Waveform data of the d                    | evice being displayed                      |  |  |  |

### 8. 3. List data file

#### (1) File format

Binary, network byte order (big-endian, MSB First) format

(2) File name

The file number is the file path set in the "list file path" in the "config" tab, with 0's and 6 digits appended to it. For example, if list file path is set to D:¥data¥123456.bin and file number is set to 1, the file size is D:¥data¥123456\_000001.bin.

When list file size is reached, the file being saved is closed. After that, it automatically moves up the list file number by one, opens a new file, and continues to save the data in the file.

#### (3) Component

80 bits per event (10 Byte, 5 WORD)

| Bit79           | )  |               |           |                               | 64 |
|-----------------|----|---------------|-----------|-------------------------------|----|
|                 |    |               | real time | 2[5540]                       |    |
| 63              |    |               |           |                               | 48 |
|                 |    |               | real time | 2[3924]                       |    |
| 47              |    |               |           |                               | 32 |
|                 |    |               | real tim  | e[238]                        |    |
| 31              |    |               | 24        | 23                            | 16 |
|                 |    | real time[70] |           | real time fixed fraction [70] |    |
| 15              | 13 | 12            |           |                               | 0  |
| CH[20] QDC[120] |    | QDC[120]      |           |                               |    |

Figure 41 list data format

• Bit79 to Bit24

real time. 54Bit. 1ns per 1Bit

- Bit23 to Bit16 real time fixed fraction. 8Bit. 3.90625ps per 1Bit
- Bit15 to Bit13 CH. Number of channel. 4Bit. CH1 is 0, CH16 is 15
- Bit12 to Bit0

QDC, integral value. unsigned 13bit integer. The collected waveforms are filtered, and the waveforms are integrated over a set range from the point where the threshold is exceeded.

# 8. 4. PSA list data file \* Option

- (4) File format
  - Binary, network byte order (big-endian, MSB First) format
- (5) File name

The file number is the file path set in the "list file path" in the "config" tab, with 0's and 6 digits appended to

it. For example, if list file path is set to D:¥data¥123456.bin and file number is set to 1, the file size is D:¥data¥123456\_000001.bin.

When list file size is reached, the file being saved is closed. After that, it automatically moves up the list file number by one, opens a new file, and continues to save the data in the file.

(6) Component

128 bits per event (16 bytes, 8 WORD) + waveform data

If it is pile-up data, Bit79 is set to "1" and 128-bit list data + waveform data is added and output.

If it is not pile-up data, Bit79 is set to "0" and only 128-bit list data is output.

| Bit127          |                 |       |        |                              | 112 |
|-----------------|-----------------|-------|--------|------------------------------|-----|
|                 |                 | TOTAL | _[150] |                              |     |
| Bit111          |                 |       |        |                              | 96  |
|                 |                 | FALL  | [150]  |                              |     |
| Bit95           |                 |       |        |                              | 80  |
|                 |                 | RISE[ | [150]  |                              |     |
| Bit79           |                 |       | 64     |                              |     |
|                 | real time[5540] |       |        |                              |     |
| 63              |                 |       |        |                              | 48  |
| real time[3924] |                 |       |        |                              |     |
| 47              | 47              |       |        | 32                           |     |
|                 | real time[238]  |       |        |                              |     |
| 31              |                 | 24    | 23     |                              | 16  |
|                 | real time[70]   |       |        | real time fixed fraction[70] |     |
| 15 13           | 12              |       |        |                              | 0   |
| CH[20]          | CH[20] QDC[120] |       |        |                              |     |

Figure 42 list data format (list with PSA)

• Bit127 to Bit112

RISE (Rise-Integral Partial Integration of Waveforms) value. Unsigned 16-bit integer.

- Bit111 to Bit96
   FALL (waveform falling partial integral) value. Unsigned 16-bit integer.
- Bit95 to Bit80
   TOTAL (total integral of waveform) value. Unsigned 16-bit integer.
- Bit79 WAVE data presence/absence. If yes, 1.
- Bit78 to Bit25
   TDC. 54Bit. 1ns per Bit.
- Bit24 to Bit17
   TDC FP. 8Bit. 3.90625ps per Bit.
- Bit16 to Bit13 CH. channel number. 4Bit. 0 for CH1, 15 for CH16.
- Bit12 to Bit0 QDC (integral value). Unsigned 13-bit integer. The summed value of the waveforms between the set ranges from where the collected waveforms are filtered, and the threshold is exceeded.

### 8. 5. List-wave and list pile-up wave data file \* Option

#### (1) File format

Binary, network byte order (big-endian, MSB First) format

- (2) File name
  - Set arbitrarily
- (3) Component

| ① Normal (In case of 80 bit of list data part) |               |                               |    |  |  |
|------------------------------------------------|---------------|-------------------------------|----|--|--|
| Bit79                                          | Bit79 64      |                               |    |  |  |
|                                                | real time     | ə[5540]                       |    |  |  |
| 63                                             |               |                               | 48 |  |  |
|                                                | real time     | ə[3924]                       |    |  |  |
| 47                                             |               |                               | 32 |  |  |
|                                                | real tim      | e[238]                        |    |  |  |
| 31                                             | 24            | 23                            | 16 |  |  |
|                                                | real time[70] | real time, fixed fraction[70] |    |  |  |
| 15 13                                          | 12            |                               | 0  |  |  |
| CH[20]                                         |               | QDC[120]                      |    |  |  |
|                                                |               |                               |    |  |  |
|                                                | wave nun      | nber[150]                     |    |  |  |
|                                                |               |                               |    |  |  |
|                                                | header        | [3116]                        |    |  |  |
|                                                |               |                               |    |  |  |
| header[150]                                    |               |                               |    |  |  |
|                                                |               |                               |    |  |  |
| wave data[150] × wave number 分                 |               |                               |    |  |  |
|                                                |               |                               |    |  |  |

Figure 43 list-wave and list pile-up wave data format (normal)

• Bit79 WAVE data presence/absence. If yes, 1. Bit78 to Bit25 real time. 54Bit. 1ns per 1Bit • Bit24 to Bit17 real time, fixed fraction. 8Bit. 3.90625ps per 1Bit • Bit16 to Bit13 CH. Number of channel. 4Bit. CH1 is 0, CH16 is 15 QDC, integral value. Unsigned 13-bit integer. The collected waveforms are • Bit12 to Bit0 filtered, and the waveforms are integrated over a set range from the point where the threshold is exceeded. Waveform data wave number. 16Bit. Waveform points Waveform data header. 32Bit. The following CH information is added as a header 0x57415630 (=WAV0) CH1 header CH2 header 0x57415631 (=WAV1) CH3 header 0x57415632 (=WAV2) CH4 header 0x57415633 (=WAV3) Waveform data wave data. 16 bits per waveform, with an offset of 16384 digits. waveform information for wave number is added.

| ① List with PSA (in case of list data part 128Bit) |            |               |           |                                |     |
|----------------------------------------------------|------------|---------------|-----------|--------------------------------|-----|
| Bit127                                             |            |               |           |                                | 112 |
|                                                    | TOTAL[150] |               |           |                                |     |
| Bit111                                             |            |               |           |                                | 96  |
|                                                    |            | FAL           | _[150]    |                                |     |
| Bit95                                              |            |               |           |                                | 80  |
|                                                    |            | RISE          | [150]     |                                |     |
| Bit79                                              |            |               |           |                                | 64  |
|                                                    |            | real tim      | ie[5540]  |                                |     |
| 63                                                 |            |               |           |                                | 48  |
|                                                    |            | real tim      | ie[3924]  |                                |     |
| 47                                                 |            |               |           |                                | 32  |
|                                                    |            | real tir      | ne[238]   |                                |     |
| 31                                                 |            | 24            | 23        |                                | 16  |
|                                                    |            | real time[70] |           | real time fixed fractions [70] |     |
| 15                                                 | 13         | 12            |           |                                | 0   |
| CH[2                                               | 0]         |               | QDC[12    | 20]                            |     |
|                                                    |            |               |           |                                |     |
|                                                    |            | wave nu       | mber[150] | ]                              |     |
|                                                    |            |               |           |                                |     |
| header[3116]                                       |            |               |           |                                |     |
|                                                    |            |               |           |                                |     |
| header[150]                                        |            |               |           |                                |     |
|                                                    |            |               |           |                                |     |
| wave data[150] × wave number 分                     |            |               |           |                                |     |
|                                                    |            |               |           |                                |     |

Figure 44 list-wave and list pile-up data format (list with PSA)

| • | Bit127 to Bit112 | RISE (Rise-Integral I integer.                                                                   | Partial Integration of Waveforms) value. Unsigned 16-bit                                                                           |  |
|---|------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|
| • | Bit111 to Bit96  | FALL (waveform falli                                                                             | ng partial integral) value. Unsigned 16-bit integer.                                                                               |  |
| • | Bit95 to Bit80   | RISE (Rise-Integral I<br>integer.                                                                | Partial Integration of Waveforms) value. Unsigned 16-bit                                                                           |  |
| • | Bit79 to Bit24   | Real time. 56Bit. 1ns                                                                            | s per Bit.                                                                                                                         |  |
| • | Bit23 to Bit16   | Real time fixed decir                                                                            | nal. 8Bit. 3.90625ps per bit.                                                                                                      |  |
| • | Bit15 to Bit13   | CH. channel number                                                                               | r. 3Bit, CH1 is 0, CH4 is 3                                                                                                        |  |
| • | Bit12 to Bit0    | QDC (integral value)<br>waveforms between<br>filtered, and the three                             | ). Unsigned 13-bit integer. The summed value of the<br>the set ranges from where the collected waveforms are<br>shold is exceeded. |  |
| • | Waveform data    | wave number. 16Bit.                                                                              | . number of waveform points                                                                                                        |  |
| • | Waveform data    | wave data. 32bit per waveform. 16384digit offset. Waveform information for wave number is added. |                                                                                                                                    |  |
|   |                  | CH1 header                                                                                       | 0x57415630 (=WAV0)                                                                                                                 |  |
|   |                  | CH2 header                                                                                       | 0x57415631 (=WAV1)                                                                                                                 |  |
|   |                  | CH3 header                                                                                       | 0x57415632 (=WAV2)                                                                                                                 |  |
|   |                  | CH4 header                                                                                       | 0x57415633 (=WAV3)                                                                                                                 |  |
|   |                  | CH5 header                                                                                       | 0x57415634 (=WAV4)                                                                                                                 |  |

Waveform data wave data. 16bit per waveform. 16384digit offset. Waveform information for wave number is added.

# 8. 6. PSD data file \* Option

- File format
   CSC text format, separated by commas
   File name
- (2) File name Set arbitrarily
- (3) Component

The data in the PSD 2D histogram and the cursor area spectrum are variable-length data with a count of 1 or more.

```
[PSD]
```

XAxisCursorRange X axis range start and end channels at cursor YAxisCursorRange Y-axis range start and end channels at cursor Compress (x/16384) Number of channels of compression ratio

[PSD 2D histogram]

#FALL,TOTAL,Counts X-axis: data in the selected List, Y-axis: data in the selected List, total count 6952,9192,1

: Variable length. Maximum 8192 x 8192 = 67108864

[cursor area spectrum]

FALL,Counts: Data in selected List on X-axis, Integral count 6644.0

:

Variable length. Maximum 8192

# 9. Troubleshooting

### 9. 1. Connection error occurs

If you get a connection error at startup or in menu config, your network may not be connected properly. In

this case, check the following.

(1) Confirm that the IP in the configuration file config.ini is set to 192.168.10.128, that each port number in the [System] section is defined as follows, and that the IP address is the same when you start this application

[System] PCConfigPort = 55000 PCStatusPort = 55001 PCDataPort = 55002 DevConfigPort = 4660 DevStatusPort = 5001 DevDataPort = 24 SubnetMask = "255.255.255.0" Gateway = "192.168.10.1" Check if the PC's network inform

(2) Check if the PC's network information is configured to connect to this device. The default values for this device are as follows.

| IP address      | 192.168.10.128 |
|-----------------|----------------|
| Sub-net mask    | 255.255.255.0  |
| Default gateway | 192.168.10.1   |

- (3) There is a conflict with an arbitrary port number on the PC side for the UDP connection. In this case, define another number for Port in the configuration file config.ini before startup.
- (4) Turn on the power with the Ethernet cable connected.
- (5) Execute the ping command at the command prompt to check if the device and PC can communicate.
- (6) Turn the power of the device back on and execute the ping command again.
- (7) Turn off virus detection software and firewall software.
- (8) Always turn on power-saving functions such as PC sleep mode.
- (9) Disable the wireless LAN function for laptops, etc.

### 9. 2. Command error occurs

The combination of firmware and application for this device may not match due to the presence or absence of options, etc. Please contact us for further information.

# 9. 3. Histogram is not displayed

If nothing appears in the histogram tab graph after executing Menu Start, check the following points

- (1) Set CH1 to ON at plot ON in the histogram tab.
- (2) Check if input total rate (cps) and throughput rate (cps) are counting.
- (3) Set DAC monitor CH to CH1 and DAC monitor type to pre-amp, and check that the pre-amp wave height is not too small or too large, and that it is within 1V.
- (4) Set DAC monitor type to fast and check if the FAST filter signal is output.
- (5) Set the DAC monitor type to slow and check if the SLOW filter signal is output.
- (6) Make sure that the fast trigger threshold and slow trigger threshold values are not too small or too large, and while watching the input total rate (cps) and throughput rate (cps) counts, change the settings from 100 to 30 or so.
- (7) Right-click on the X and Y axes of the graph to set auto scale.

### 9. 4. Change IP address

Refer to the attached "Instruction Manual: How to Change the IP Address of the APG5107-Equipped

Product". (If you do not have the attached document, please contact us.

APV8104 Instruction Manual

TechnoAP Co., Ltd. Add: 2976-15 Mawatari, Hitachinaka-shi, Ibaraki, Postcode: 312-0012 TEL: +81-29-350-8011 FAX: +81-29-352-9013 URL: http://www.techno-ap.com e-mail: info@techno-ap.com